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Abstract— We introduce a novel differentially private algo-
rithm for online federated learning that employs temporally
correlated noise to enhance utility while ensuring privacy of
continuously released models. To address challenges posed by
DP noise and local updates with streaming non-iid data, we
develop a perturbed iterate analysis to control the impact of
the DP noise on the utility. Moreover, we demonstrate how
the drift errors from local updates can be effectively managed
under a quasi-strong convexity condition. Subject to an (e, d)-
DP budget, we establish a dynamic regret bound over the entire
time horizon, quantifying the impact of key parameters and
the intensity of changes in dynamic environments. Numerical
experiments confirm the efficacy of the proposed algorithm.

I. INTRODUCTION

In this paper, we focus on online federated learning
(OFL) [1]-[3], a framework that combines the principles of
federated learning (FL) and online optimization to address
the challenges of real-time data processing across distributed
data resources. In OFL, a central server coordinates multiple
learners, each interacting with streaming clients as they
arrive sequentially. The client data is used collaboratively to
improve the utility of all learners [4], [5]. OFL is particularly
relevant for applications that require immediate decision-
making. One example could be a hospital network where
individual hospitals act as learners and their patients serve as
clients; see Fig. 1. By enabling real-time model updates using
new patient data, hospitals can offer instant health treatment
or advice. Similar scenarios arise in predictive maintenance,
anomaly detection, and recommendation systems.

Unlike offline FL, where the data sets that different
actors have access to are fixed before learning begins [6],
streaming data that arrives at different time steps is typically
not independent and identically distributed, even on the
same learner. Considering the possibly substantial differences
among clients associated with different learners, the data
across learners also exhibits non-iid characteristics, even in
the same time step [1]. Our goal is to train a model using
streaming non-iid data and release it in real-time to offer
clients access to a continuously improved service.

A major concern in collaborative learning is the risk of
privacy leakage. Clients that participate in the online learning
process need assurance that their sensitive private data is not
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exposed to others [7], [8]. Differential privacy (DP), which
typically involves adding noise to the sensitive information
to guarantee the indistinguishability of outputs [9]-[11], is
widely recognized as a standard technique for preserving and
quantifying privacy.

Most research on differentially private federated learning
focuses on an offline setting where privacy-preserving noise
is added independently across iterations. This approach al-
lows for calculating the privacy loss per iteration and then
applying composition theory to compute the total privacy
loss after multiple rounds of release. However, the injection
of iid noise into the learning process also reduces the util-
ity [12], [13]. The online setting presents additional privacy
considerations. Since the model on the server is continuously
released and gradients are computed at points that depend
on all the previous outputs, our privacy mechanism needs
to accommodate adaptive continuous release [8], [14]. This
means that we have to account for a more powerful adversary
who can select data based on all prior outputs. While some
studies have explored differentially private OFL algorithms
with independent noise [3], [15], [16], none of them have
addressed the challenges of adaptive continuous release.

Recently, several authors have proposed algorithms that
use temporally correlated noise to improve the privacy-utility
trade-off in the single-machine setting [7], [8], [17], [18].
These methods can be represented as a binary tree [14],
where the privacy analysis for the entire tree supports the
adaptive setting [19]. Temporally correlated noise processes
can also be constructed through matrix factorization (MF), a
technique originally developed for offline settings [20] and
recently extended to adaptive continuous release [8], [21].
The matrix factorization approach introduces new degrees
of freedom that can be exploited to improve the balance
between utility and privacy even further [17], [22].

While correlated noise has proven effective in single-
machine online learning, its applicability to OFL scenarios
has not yet been investigated. A key distinction between OFL
and single-machine online learning is the use of local updates
to enhance communication efficiency [23]. However, local
updates with streaming non-iid data complicate utility analy-
sis, particularly when combined with privacy protection using
correlated noise. Moreover, even in a single-machine set-
ting without privacy protection, establishing dynamic regret
bounds without assuming convexity requires new analytical
techniques due to the non-uniqueness of optimal solutions.

Contribution. We extend temporally correlated DP noise
mechanisms, previously studied in single-machine settings,
to OFL. Using a perturbed iterate technique, we analyze
the combined effect of correlated DP noise, local updates,
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Fig. 1: Our OFL architecture

and streaming non-iid data. Specifically, we construct a
virtual variable by subtracting the DP noise from the actual
variable generated by our algorithm, and use it as a tool
to establish a dynamic regret bound for the released global
model. Moreover, we show how the drift error caused by
local updates can be managed under a quasi-strong convexity
(QSC) condition. Subject to an (e, §)-DP budget, we establish
a dynamic regret bound of O (TR%% +7CRr
over the entire time horizon, where R is the number of
communication rounds, 7 is the number of local updates,
and Cp is a parameter that reflects the intensity of changes
in the dynamic environment. Under strong convexity, we
are able to remove the dependence on Cr and establish
a static regret bound in the order of O (TR3 M
Numerical experiments confirm the efficacy of our algorlthm.
Notation. Unless otherwise specified, all variables are d-
dimensional row vectors. Accordingly, loss functions map
d-dimensional row vectors to real numbers. The Frobenius

norm of a matrix is denoted by | - ||, and the ¢2-norm of a
row vector is represented by || - ||. The notation [n] refers to
the set {1,...,n}, and P%. denotes the projection of = onto

the set X*. We use Pr to denote the probability of a random
event and [E for expectation. The notation & ~ N(0, V2)fxd
indicates that all entries of £ are independent and follow
the Gaussian distribution A/(0, V2). Bold symbols represent

aggregated variables: x = [z1;...;2%] € Rf*? aggregates
vectors 2" € R4 G = [¢%;...; g% 1] € RE*4 aggregates
vectors g"~! € RY™4; and x° = [20;...;20] € RExd

repeats vector 2 € R'*? Matrices A, B, and C € RF*F
have rows a”, b, and ", respectively.

II. PROBLEM FORMULATION

Online federated learning: Our OFL architecture is
illustrated in Fig. E} We have one server and n learners,
where each learner ¢ € [n] interacts with streaming clients
that arrive sequentially. We refer to the model parameters
on the server and learners as the global model and local
models, respectively. The learning task is for the server to
coordinate all learners in training the global model online.
The updated global model is then continuously released to
the clients to provide instant service. To improve commu-
nication efficiency, learner 7 utilizes the data of 7 local
clients to perform 7 steps of local updates before sending
the updated local model to the server. To formulate this
intermittent communication, we define the entire time hori-
zon as {0,1,...,7 —1,..., (R — 1)7,..., RT — 1}, with
communication occurring at time step {r7 : r € [R] — 1},

indicating a total of R communication rounds spaced by 7
intervals. At the ¢-th local update of the r-th communication
round, the client, identified by i"* € [R7], queries the current
global model " and feeds back its data Df’t to learner ¢
The utility of the series of global models {«"} is quantified
by a dynamic regret across the entire time horizon
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Here, f]"'(z") is the loss incurred by the global model z”
on data D} and (f")* is a dynamic optimal loss defined by
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The word dynamic means the regret metric being a difference
between the loss incurred by our online algorithm and a
sequence of time-varying optimal losses. In contrast, another
commonly used metric is called static regret defined by
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Reget, = 3= 33 (07) - 16
r=0 t=0
where z* represents an optimal model, belonging to the

optimal solution set X'* that minimizes the cumulative loss
over entire data, such that
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Unlike Regret;, Regret, compares against a static optimal
loss, which is made by seeing all the data in advance. Note
that the dynamic regret is more stringent and useful than the
static one in practical OFL scenarios [24], [25].

In our paper, we aim to learn a series of {z"} that
minimizes Regret,; while satisfying privacy constraints.

Privacy threat model: Considering the unique challenges
of streaming data, we specifically allow a powerful adversary
that can select data (cf. D:’t) based on all previous outputs
(cf. {z° ...,2"}), highlighting the adaptive nature of our
threat model. Except this, our threat model is consistent
with the central DP as known in the literatures [3], [26],
[27], which relies on the server to add privacy preserving
noise to the aggregated updates from learners. Both the
server and all learners are trustworthy, while clients are semi-
honest, meaning they execute the algorithm honestly but
may attempt to infer the privacy of other clients through
the released global model. Additionally, we assume that the
communication channels between the server and the learners
are secure, preventing clients from eavesdropping. We aim
to guarantee clients’ privacy under the adaptive continuous
release of global models {z1,...,2r}.

To quantify privacy leakage, we employ the concept of
differential privacy. We define the aggregated dataset as D =
{D]'" :i € [n],r € [R] —1,t € [r] — 1}. DP is used over
neighboring datasets D and D’ that differ by a single entry
(for instance, replacing D] by D;"t/). The formal definition
of DP is provided as follows [28].



Algorithm 1 Proposed algorithm

1: Input: R, 7, n, ng, 71 = nn,7, 2°, B, b° = 0, and (¢, §)-
DP budget

2: Generate noise & ~ N(0,V?)#*4 where V2 is deter-
mined to satisfy (e, d)-DP budget

3: forr=0,1,..., R—1 do

4 Learner ¢

5 Set 20 = a"

6: fort=0,1,...,7—1 do

7 Respond with z” to the client ™!

8 Obtain D" from client i"*

9 Update 2" = 20" — V7" (2]")

10: end for

11:  Send z;" to the server

12: Server

13: Update

14: end for
15: Output: {z!,... =}

Definition 2.1: A randomized mechanism M satisfies
(e,8)-DP if for any pair of neighboring datasets D and D',
and for any set of outcomes O within the output domain,

PrM(D) € O] < ¢ Pr[M (D') € O] + 6.

Here, M(D) represents the whole sequence of outputs
generated by the mechanism M throughout its execution,
specifically {x1,...,zr} in our OFL setting. The privacy
protection level is quantified by two parameters, ¢ and &,
where smaller values indicate stronger privacy protection.

ITII. ALGORITHM
A. Proposed algorithm

We propose a DP algorithm for OFL, as outlined in
Algorithm [T} The characteristic of our algorithm is the use
of temporally correlated noise to protect privacy, alongside
leveraging local updates to reduce the communication fre-
quency between the server and learners.

Our algorithm consists of two loops: the outer loop is
indexed by r for communication rounds, and the inner loop
is indexed by ¢ for local updates. At the ¢-th local update
of the r-th communication round, learner ¢ responds with
the current global model x” to the client ™ and obtains
the client data D:’t. Learner ¢ then computes the gradient of
the loss f; " at 2" using data D:’t and performs one step of
local update with step size 1. After 7 local updates, the local
model z;"" is sent to the server. The server averages these
z;'",Vi € [n], updates the global model =" with step size
7 and adds temporally correlated noise, specifically ("1 —
b")€, to maintain the differential privacy of z"*!.

To implement our algorithm, we need to construct the
matrix B and determine the variance V2 of DP noise. We
will accomplish it via matrix factorization.

B. Matrix factorization

Matrix factorization, originally developed for linear count-
ing queries [22], has been adapted to enhance the privacy
and utility for gradient-based algorithms [7]. This approach
involves expressing the iterate of the gradient-based algo-
rithm as 2" = 20 — 772;;(1) g7, where g; is the gradient-
based direction at 7-th iteration, thereby determining each ="
by a cumulative sum that is a specific case of linear query
release [7, Theorem B.1]. Therefore, the key DP primitive
is accurately estimating cumulative sums over individual
gradients. This principle pertains to the server-side update
in our OFL. Indeed, we can equivalently reformulate Line
13 of Algorithm [T] as

gt =a"—q (g + T =b)E), Vre R -1, (1)
where g" = L ST VS VP20, Setting 5 = 0 and

nrt t=0

repeated application of (I result in
x =x" — 7j(AG + B¢), 2)

where A is a lower triangular matrix with 1s on and below
the diagonal. Note that we do not require B to be lower-
triangular because this requirement has been relaxed by
utilizing the rotational invariance of the Gaussian distribution
in [8, Proposition 2.2].

Although each entry of £ is independent, the multiplication
by matrix B introduces correlations among the rows of
BE&, complicating the privacy analysis. A strategic approach
involves decomposing matrix A as A = BC, thereby
selecting such B to construct temporally correlated noise and
then extracting B as a common factor. Substituting A = BC
into (Z), we have

x =x" — 71B(CG + £). (3)

Here, the noise & with iid entries are added to CG and
the privacy loss of (B) can be interpreted as the result of
post-processing [29] following a single application of the
Gaussian mechanism [8].

The determination of the suitable matrix factorization BC
and the variance V2 of DP noise relies on the analysis of
utility; hence, we will address this in the next section.

IV. ANALYSIS

Throughout this paper, we impose the following assump-
tions on the loss functions.

Assumption 4.1: The loss function fLr s L-smooth, i.e.,
for any x,y, there exists a constant L such that

F ) < I @)+ (V4 a)y — )+ oy
Assumption 4.2: Consider the aggregated loss function f”
and its optimal solution set X* := argmin, f"(z). The
function f” is u-quasi strongly convex, i.e., for any z, there
exists a constant p such that

T\ % T r T K T
(f)" 2 f(@) +{Vf"(2), Pk, —2) + S|P - =%
Assumption 4.3: Each loss function f; " has bounded gra-
dient, i.e., for any x, there exists a constant B, such that

IV £ (@)l < By.



Assumption 4.4: For any 2", xg, there exists a constant o
such that | P%. — P || < /alla" — .

Assumption is standard in optimization literature. As-
sumptuon is weaker than strong convexity and a function
that is QSC may be non-convex, with specific examples
seen in [30], [31]. Assumption @] is frequently invoked in
DP research to ensure bounded sensitivity [32], [33], and it
aligns with the Lipschitz continuous condition of f; " that is
common in online learning literature [1], [8]. Assumption
is a regularity condition that is necessary for our analysis
since X'* for a QSC problem may not be convex.

With these assumptions, we are ready to establish the
analysis of our algorithm on utility and privacy. All the
proofs can be found in our full version [34].

A. Utility

Inspired by the works [18], [35] in the single-machine
setting, we employ the perturbed iterate analysis technique
to control the impact of DP noise on utility. Observing the
structure of temporally correlated noise (b" ™! —b")€, which
is the difference of noises at successive communication
rounds, we define a virtual variable xg as

g =" +qb"E,

and rewrite the update on the server (cf. Line 13 of Algo-
rithm [T as

1
r+1: - - .T’t 7_“,t 4
Te =g TZHZZVL (z:7); €y

where we substitute the fact that 1Y% 21" = 2" —
YTy LS V(2] into Line 13 of Algorithm
Intuitively, the virtual variable x¢ is designed to subtract the
DP noise in z", utilizing gradient information that remains
untainted by DP noise for its update, as detailed @). By
analyzing the distance between x; and the optimal solution
set X'*, we establish the following lemma regarding dynamic
regret.

Lemma 4.5: Under Assumptions if n < 8%, for
Algorithm [I] we have

[0)
x
Regret, _ Ellzd — Py, |17

S’I"
Rt — R7 o

where
11 Tk
STi= — 4+ - | 2L’ B?
<n+12L+u> 2o
24L(1 72
L 24LA +o)n
R

(12L 4 ) Cr

B|%dV?
IB||7dV= + 7

and C := Y1 B|| P, —P%. |12

As shown in Lemma[4.5] the term S™ encapsulates several
distinct sources of error including the term B, caused by the
drift error from local updates, the term V2 caused by DP
noise, and the term C'r caused by the dynamic environment.
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B. Privacy

Recall that A = BC and the equivalence of Algorithm [I]
to x = x" —7{B(CG +¢). Lemma4.5|illuminates the impact
of B and V2 on utility. It is equally crucial to know the
influence of B, C, and V2 on privacy loss to determine their
values. Based on our privacy threat model and the definition
of neighboring data sets in Section [l we can adopt the
methodology from the single-machine setting [8] to analyze
the privacy loss incurred by the adaptive continuous release
of {x1,..., 2%}

Theorem 4.6 (Theorems 2.1 and 3.1 in [8]): Consider a
lower-triangular matrix A of full rank and its factorization
A = BC. For any neighboring sets G, G’ € R®*4 it holds
that ||C(G - G/>||F < Q’YBg where v = maXyg|R] ||C[$T]H
is the largest column norm of C. Given the Gaussian

) 442 B2(210g(1/§ Rxd .
noise £ ~ N (0, 7By ;g( /9)+e) , if the mechanism

M(G) = B(CG + ¢) satisfies (e, 9)-DP in the nonadaptive
continuous release, then M satisfies the same DP guarantee
with the same parameters even when the rows of G are
chosen adaptively.

To achieve higher accuracy, Theorem [4.6] suggests a small
v = max,¢(g) [|Cy.,,|| and Lemma suggests a small
|B||%. Let us define CT as the Moore-Penrose pseudo-
inverse of C. Under the fact that ACT yields the minimal
{5-norm solution for solving the linear equation A = BC,
the work [8] proposes to construct the matrix factors B and
C through the optimization problem

i ACH| 5
N (5)

where V is a linear space of matrices. The closed-form
solution of (B) can be found in [8, Theorem 3.2].

By using (), we can guarantee that v = 1. For ||BJ|%,
we assume that ||B||% = O(R?) by observing that there are
R? entries in B, each of which are bounded. To show that
IB||% = O(R?) is reasonable (even overly conservative),
we run the algorithm for solving (3) in [8, Theorem 3.2]
and plot ||B||% versus R in Fig. 2l which shows that | B|%
is much smaller than R2. Note that the factorization only
requires prior knowledge of R, and it is calculated offline
only once before the algorithm starts running.

C. Utility-privacy
Combining Lemma [4.5] Theorem and |B|Z =
O(R?), we get the utility-privacy trade-off.



Theorem 4.7: Under Assumptions | if 77 < & and
i = O(1/R%), Algorithm 1 I subject to (e 6) DP satisfies

LE
Ellzf —Py. > B2
2R3

Regret, < :
Rt Rs

d Bj(log(1/d) +€) Cg

R3 €2 + R
In Theorem the errors are due to the initial error, the
local updates, the DP noise, and the dynamic environment,

respectively. We have the following observations.
« Given that 7 = nn,7 and 77 < g L, the number of local
updates 7 cannot be excessively large. Such a chozice

. . B
would necessitate a smaller 7),, leading to a larger py:
ngR3

o Our perturbed iterate analysis well-controls the irﬁpact
of DP noise on utility. This is reflected in the error term
caused by DP noise being O(1/R3), which decreases
as R increases. . ,

e The term Cp := Zf;ol E|| P%. — P%. ||2 captures that
the solution set X* changes ‘over time relative to a
fixed solution set X'*, which is unavoidable for dynamic
regret [36, Theorem 5]. Intuitively, when the environ-
ment changes very rapidly, online learning algorithms
struggle to achieve high utility. On the other hand,
establishing a sub-linear regret bound for non-convex
problems, even for static regret, presents significant
challenges [24, Proposition 1]. Thus, to remove the
dependence on Cg, we establish a sub-linear static
regret bound under SC, where SC simplifies the analysis
by allowing us to follow steps similar to those in QSC.

Corollary 4.8 (Static regret under SC): Assume the loss

function f” to be strongly convex, i.e., there exists a constant
w1 such that

T T M * T
@) = 1) + Sle = a*|? < (Vf @),z —a7), Vo,
where z* := argmin E o ' f7(z). Then under Assumpi-
tions 41 43 and 44 if 77 < OLlRl and 7 = O(1/R%),
Algorlt subJect to (¢, 0)-DP satisfies
Regret El|22 — 2*||? B?
ér s S O( H 3 . || + . g§
T Rz ngR2
d B}(log(1/6)+¢€) Cg
=T + -5
Ri €2 R:
where Cr == Y70 |la* — 27||? and 2 := argmin,, f7(z).

In Corrolary {4.8] the error term caused by CR converges
at the rate of O(1/R%) for a static regret under SC.

Remark 4.9: We compare our results with two closely
related state-of-the-art approaches [1] and [8].

The work [1] uses local updates with non-iid streaming
data for OFL but for convex problems without DP protection.
The regret in [1] is static and defined on the local models, i.e.,
Regret, ™ = 33,0¢ Y2y 3 S0 (7 () = f7 (@),
while ours is dynamic or static and is defined on the released
global model x". The regret in [1] is upper bounded by

O(rlog(TR)) for SC case and O(7R2) for convex case,
while our Regret, is bounded by (’)(TR ) for SC case and
our Regret, is bounded by O(TR3 + 7Cp) for QSC case.

The work [8] uses MF to guarantee DP for online learn-
ing under the adaptive continuous release but for convex
problems in the single-machine setting. The regret in [8,
Proposition 4.1] is static and satisfies

RegretSinele < (’)( 77||B||F
R Rn VR

<0 ( +7n \FB2 7(1%(1/5) +e) + 7132> , ©

B,V + nB§>

g

where E° is a constant about initial error and we substitute
IBllr = O(R), y=1,and V = \/w in the
second inequality. To draw a comparison with our findings,
we select the step size n in (6). By setting O (R%,) =

O(nVR), Regrets"8 in [8] becomes

RegretSinele E° log(1/6) + ¢ B?

g <O( B0 [loaUUD) £ | B
R Ri Ri € Ri
which implies that Regreti™#' in [8] is bounded by
o (Ri (10g(1/25)+6)
7 =1, and 1y = 1, it reduces to a single-machine algorithm.
Our Regret, is bounded by O (R% (log(iﬁ) for SC case

and our Regret, is bounded by O gRg(log(leW + CRP
for QSC case. Additionally, our proof uses QSC or SC while
algorithm in [8] uses general convexity, which accounts for
the different dependency on €; ours is (log(1/8)+¢)/€* while
that in [8] is \/(log(1/0) + €)/€2.

V. EXPERIMENTS

Consider a logistic regression problem
R-17-1 n

min 5 3033 47 @)

r=0 t=0 i=1

where f{"(z) = log (1+exp(— g a:’t) b:*t)) is the loss
function on learner 7 and (a)*,b]") € R? x {—1,+1} is
the feature-label pair. To generate data, we use the method
in [37] which allows us to control the degree of heterogeneity
by two parameters («, 3). The experiments are carried out 20
times, with the results being averaged and displayed along
with error bars to indicate the standard deviation.

1) Impact of 7: In the first set of experiments, we show
the impact of 7 on our algorithm. We set n = 10 learners,
with each learner receiving 800 streaming clients. We set the
parameters on data heterogeneity to («, ) = (0.1,0.1) and
the privacy budget to (5,1e~3)-DP. We set 7 € {1,2,4},
with corresponding R € {800, 400,200}, so that the total
data used in each test is the same. The step-sizes are the
same in all tests. The results are shown in Fig. 3] The y-axis
represents loss error of the current 2™ over the entire dataset,

). Adapting our algorithm for n = 1,

loss error =



(5, 1e-3)-DP
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Fig. 3: Impact of 7
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Fig. 4: Comparison under different DP budgets

and the z-axis represents the communication round. Our
algorithm achieves almost the same utility with fewer com-
munications as 7 increases while satisfying (5, 1e=3)-DP.

2) Comparison under different DP budgets: We are un-
aware of any algorithm that considers the same setting as
we do. The closest work appears to be the differentially
private OFL algorithm in [3]. However, in contrast to us, their
algorithm uses independent DP noise and does not consider
the adaptive setting. Its server-side update is

n 7—1
2t =g - lZZVfﬁ(ac’") +C), O

"=t =0
where ¢ ~ N(0,V?2)1*4, The work in [3] is compelling
since V? required to satisfy the privacy budget can be
chosen independently of R and 7. Specifically, according
to [3], using the neighboring definition of streaming data,
the variance in (7) is set as V? = 2BZ/p with p =

2 .

(\/e +logl/6 — \/logl/é) ~ 41;;

p-zCDP [38] and equivalently is (e, 6)iDP after releasing
{xt,.. . 2f}.

In the second set of experiments, we set n = 10 learners,

to ensure (7)) is

with each learner managing 8000 clients step by step, where
7 = 10 and R = 800, respectively. We set (o, ) =
(0.1,0.1). We compare our algorithm with [3] under two
privacy budgets (e, 8) € {(5,1e7?),(1,1e73)}.

The results are shown in Fig. E[ For our algorithm, we use
the same step sizes under both privacy budgets, allowing
our algorithm to maintain almost the same convergence
rate, although the variance of the results increases when the
privacy budget is stricter (i.e., (1,1e~3)-DP). For the com-
pared algorithm, the variance also increases as the privacy
requirements become more stringent, but in addition, the
algorithm has to use a smaller step-size and the convergence
slows down by a lot. Our algorithm performs better than [3],
thanks to the use of correlated noise which allows to reduce
the amount of perturbation on the utility.

VI. CONCLUSIONS

We have proposed a DP algorithm for OFL which uses
temporally correlated noise to protect client privacy under
adaptive continuous release. To overcome the challenges
caused by DP noise and local updates with streaming non-
iid data, we use a perturbed iterate analysis to control the
impact of the DP noise on the utility. Moreover, we show
how the drift error from local updates can be managed
under a QSC condition. Subject to a fixed DP budget,
we establish a dynamic regret bound that explicitly shows
the trade-off between utility and privacy. Numerical results
demonstrate the efficiency of our algorithm. Future research
directions include extending the temporally correlated noise
to scenarios where the server is not trusted, designing optimal
matrix factorization strategies tailored to improve utility, and
exploring the application of the proposed algorithms to real-
world scenarios in online control and signal processing.
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APPENDIX

The local and global updates of the proposed Algorithm I]
can be expressed as

2P = 2D g, Ve 1] - 1,7 € |
1 7T—1 n
xr+1 — " — ﬁ ( Z Z vfir,t(zir,t br+1 E
nTt
t=0 i=1

®)
where 20 = a", §j = n,n7, &€ ~ N(0,V2)Exd,
We aim to achieve tighter convergence by utilizing the
structure of temporally correlated noise. To this end, we
define
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and then the global updates in (§) yields
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In the following analysis, we focus on the sequence {xg},n
instead of {z"},.
A. QSC case: proof of Lemma
With (@), we have
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where for the inequality we also use 2a”b < 6||a||? + %|/b||?

for any 6 > 0 and Assumption 2] such that
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inequality we have
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where the first inequality is from the optimality of P>, and i nr ; v !
the second inequality is from 2a”b < 6||a||* + %|[b]|* for t=0i=1

any 6 > 0. To bound the term (IV), adding and subtracting
VIt (a") yields
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We define the two terms on the right hand of the above
equality as (IV.I) and (IV.II), respectively. For (IV.I), we use
the QSC to get that the cross term yields descent with the
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Substituting (IV) and (V) into (I0), we have
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To handle the term (VII), we use the L-smoothness to
transfer the gradient norm to the loss value. To this end,
we use the following fact
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Choosing 6 to make sure that — g2n 72 (1 + 39) 4L) <
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By denoting the last three terms on the right hand of (T3) as
S” and reorganizing the result, we have
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Observing the above inequality and the condition (T4), if we
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B. OSC case: proof of Theorem

In the following, we substitute the specific values given by
DP analysis and choose the step sizes. Substituting the fact
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C. Strongly convex case: dynamic regret

For the SC case, we know from (I0) with the fact z* =
X = =P -~ that
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If condition (T4) hold, following the analysis for the above
QSC case, we derive that
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D. Static regret under strongly convex case: proof of Corol-

lary

With static regret, if condition (14) hold, 20) becomes
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