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Locally Differentially Private Online Federated
Learning With Correlated Noise
Jiaojiao Zhang, Linglingzhi Zhu, Dominik Fay and Mikael Johansson

Abstract—We introduce a locally differentially private (LDP)
algorithm for online federated learning that employs temporally
correlated noise to improve utility while preserving privacy.
To address challenges posed by the correlated noise and local
updates with streaming non-IID data, we develop a perturbed
iterate analysis that controls the impact of the noise on the
utility. Moreover, we demonstrate how the drift errors from
local updates can be effectively managed for several classes of
nonconvex loss functions. Subject to an (ϵ, δ)-LDP budget, we
establish a dynamic regret bound that quantifies the impact of
key parameters and the intensity of changes in the dynamic en-
vironment on the learning performance. Numerical experiments
confirm the efficacy of the proposed algorithm.

Index Terms—Online federated learning, differential privacy,
correlated noise, dynamic regret.

I. INTRODUCTION

In this paper, we focus on online federated learning
(OFL) [1]–[3], a framework that combines the principles of
federated learning (FL) and online learning (OL) to address
the challenges of real-time data processing across distributed
data resources. In OFL, a central server coordinates multiple
learners, each interacting with streaming clients as they arrive
sequentially. The client data is used collaboratively to improve
the utility of all learners [4]–[6]; see Fig. 1.

Fig. 1: OFL framework

Traditional FL operates in an offline setting, where data
is stored on learners and can be sampled IID (e.g., through
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random mini-batches at each iteration) from a fixed distribu-
tion, allowing for repeated use of the same data. However,
in practical applications, data often arrives in a streaming
fashion, making offline FL insufficient. This online setting
introduces two main challenges: (i) Storing data is inefficient
in terms of space and raises privacy concerns. Avoiding data
storage optimizes resource usage and reduces the risk of data
leakage and unauthorized access, but it also makes data reuse
difficult. (ii) Streaming data that arrives at different time steps
is typically non-IID, even for the same learner. Considering
the potentially substantial differences among clients associated
with different learners, data across learners can also exhibit
non-IID characteristics, even at the same time step [1]. Due to
time-varying data streams, updating and releasing the model
with new data can enhance model freshness. This capability of
providing continuously improved services is crucial in appli-
cations like recommendation systems, predictive maintenance,
and anomaly detection. These motivate us to study online FL.

A significant concern of federated learning is the risk of
privacy leakage. Clients in the online learning process need
assurance that their sensitive private data is not exposed to
others [7], [8]. Differential privacy (DP), which typically
involves adding noise to sensitive information to guarantee
the indistinguishability of outputs [9]–[11], is widely recog-
nized as a standard technique for preserving and quantifying
privacy. Most research on DP federated learning adds privacy-
preserving noise independently across iterations, but this noise
reduces the utility significantly [3], [12]. Recently, some au-
thors have proposed algorithms that use temporally correlated
noise to enhance the privacy-utility trade-off in single-machine
online learning [7], [8], [13], [14]. However, no theoretical
guarantees have been developed for the privacy-utility trade-
off when applying correlated noise in online federated learning
scenarios. A key difference between online federated learning
and single-machine online learning is the use of local updates
to improve communication efficiency [3]. These local updates,
combined with streaming non-IID data, make utility analysis
more challenging, especially when introducing privacy protec-
tion through correlated noise.

A. Contributions

Considering an honest but curious server and eavesdroppers,
we propose an LDP algorithm that extends temporally corre-
lated noise mechanisms, previously studied in single-machine
settings, to OFL. Using a perturbed iterate technique, we
analyze the combined effect of correlated noise, local updates,
and streaming non-IID data. Specifically, we construct a virtual
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variable by subtracting the DP noise from the actual variable
generated by our algorithm and use it as a tool to establish a
dynamic regret bound for the released global model. Subject
to an (ϵ, δ)-LDP budget, we establish a dynamic regret bound
over several classes of nonconvex loss functions that quantifies
the impact of key parameters and the intensity of changes
in the dynamic environment on the learning performance.
Numerical experiments validate the efficacy of our algorithm.

B. Related Work

To the best of our knowledge, no existing work has de-
veloped theoretical guarantees for OFL with local updates,
correlated noise for privacy protection, and nonconvex loss
functions. However, several papers have considered partial
or related aspects of this problem. For a simple overview,
we provide a comparison in Table I and include a more
comprehensive discussion of related work, covering many
more papers, below.

1) Correlated noise: The use of temporally correlated noise
for privacy protection in single-machine online learning has
recently been studied by multiple research groups [7], [8],
[13]–[15]. The proposed algorithms can be represented as a
binary tree [16], [17], where the privacy analysis ensures that
the release of the entire tree remains private. The study by
Kairouz et al. [7] utilized the binary tree mechanism to develop
a differentially private variant of the Follow-The-Regularized-
Leader (DP-FTRL) algorithm with a provable regret bound.
The Google AI blog highlighted the use of DP-FTRL in
their deployments [18]. In addition to the binary tree mech-
anism, the matrix factorization (MF) mechanism—originally
developed for linear counting queries [19]—can also be used
to construct temporally correlated noise. In fact, the binary
tree mechanism is a specific instance of the more general
MF approach, whose additional flexibility can be used to
improve the utility-privacy trade-off even further [13], [15],
[19]. For example, Denisov et al. [8] proposed an optimiza-
tion formulation for the matrix factorization that they could
solve using a fixed-point algorithm, and observed that MF-
based stochastic gradient descent significantly improves the
privacy-utility trade-off compared to a traditional binary tree
mechanism. However, these findings are primarily empirical.
Henzinger et al. [15] proposed an MF mechanism based on
Toeplitz matrices, whose elements can be explicitly iteratively
solved. This approach not only improves the regret bound
of the binary tree mechanism in [7] by a constant factor
but also provides a theoretical explanation for the empirical
improvements observed by Denisov et al. [8].

As highlighted in [8], [16], [17], using correlated noise in
online learning, unlike offline learning, requires consideration
of adaptive continual release. Continual release refers to a
privacy-preserving mechanism that handles both streaming
inputs and outputs. In [8], [17], the inputs are streaming
gradients computed from streaming raw data, while the outputs
are the noisy versions of linear queries on these gradients. The
privacy of the raw data must be preserved when all streaming
outputs are continuously observed. Moreover, one should also
consider adaptive inputs since the point at which the gradient

is computed is related to previous outputs. Some studies have
shown that both binary tree and MF mechanisms can handle
adaptive continual release [8], [17]. However, extending this
approach to design LDP online FL with local updates using
correlated noise is challenging and remains unexplored.

2) Online distributed learning: LDP with independent
noise has been explored for decentralized online learning
in [1], [3], [20]–[22]. This setting includes the server-learner
scenario as a special case, albeit without multiple local up-
dates. In particular, Liu et al. [3] aggregate a mini-batch
of gradients to perform a single local update, meaning the
local model is updated only once per communication round.
In contrast, our approach involves multiple local updates per
communication round, similar to FL algorithms like FedAvg
[23], where local models undergo several updates before
communication. The work in [1] also considers OFL with
local updates but lacks DP protection. Both [3] and [1] focus
on static regret for convex OFL. By contrast, our algorithm
introduces correlated noise and multiple local updates, requir-
ing a different design and analyses to establish dynamic regret
bounds for nonconvex problems.

3) Dynamic regret for nonconvex problems: Even in a
single-machine setting without privacy protection, establishing
dynamic regret bounds for nonconvex problems requires new
analytical techniques. On the one hand, compared with static
regret bounds, dynamic regret bounds are stricter and more
suited to scenarios with dynamic changes in the environment.
However, achieving a sublinear dynamic regret is difficult
even under strong convexity. Intuitively, when the environ-
ment changes rapidly, online learning faces greater challenges
in achieving high utility. On the other hand, establishing
a sublinear regret for nonconvex problems, even for static
regret, presents significant challenges [24, Proposition 3]. The
paper [24] studies static regret for general nonconvex problems
but requires an offline algorithm oracle to minimize the
aggregated loss. Nonconvex online learning has been studied
under special conditions on the loss functions. The work
[25] considers weakly pseudo convex objective functions and
establishes dynamic regret bounds. The work [26] considers
semi-strongly convex objectives and improves the dynamic
regret bound but needs data to be repeatedly used. By contrast,
we consider the case when data is only used once and
establish a dynamic regret bound for a class of nonconvex
problems. Compared to [25], [26], novel analytical approaches
are required to manage the correlated noise and local updates.

Notation. Unless otherwise specified, all variables are d-
dimensional row vectors. Accordingly, loss functions map d-
dimensional row vectors to real numbers. The Frobenius norm
of a matrix is denoted by ∥·∥F , and the ℓ2-norm of a row
vector is represented by ∥·∥. The notation [n] refers to the set
{1, . . . , n}, and Px

X⋆ denotes the projection of x onto the set
X ⋆. We use Pr to denote the probability of a random event
and E for the expectation. We define A ∈ RRτ×Rτ as a lower
triangle matrix with 1’s on and below the diagonal and I as
the identity matrix. Given constants R, τ , and W , we define



3

matrices Gi, B, C, and ξi as

∇f0,0
i

· · ·
∇f0,τ−1

i

· · ·
∇fR−1,0

i

· · ·
∇fR−1,τ−1

i


︸ ︷︷ ︸

Gi∈RRτ×d



b0,0

· · ·
b0,τ−1

· · ·
bR−1,0

· · ·
bR−1,τ−1


︸ ︷︷ ︸
B∈RRτ×W



c0,0

· · ·
c0,τ−1

· · ·
cR−1,0

· · ·
cR−1,τ−1


︸ ︷︷ ︸
CT∈RRτ×W


ξ1i
ξ2i
· · ·
ξWi


︸ ︷︷ ︸

ξi∈RW×d

.

The notation ξi ∼ N (0, V 2
i )

W×d indicates that all entries
of ξi are independent and follow the Gaussian distribution
N (0, V 2

i ).

II. PROBLEM FORMULATION

Online federated learning. As shown in Fig. 1, our setting
comprises one server and n learners, where each learner i ∈
[n] interacts with streaming clients that arrive sequentially. We
refer to the model parameters on the server as the global model
and the models on the learners as local models. The server’s
task is to coordinate all learners in online training of the global
model, which is continuously released to the clients to provide
instant service. To enhance communication efficiency, learner
i performs τ steps of local updates, each step using data from a
different client, before sending the updated model to the server.
To describe this intermittent communication, we define the
entire time horizon as {0, 1, . . . , τ−1, . . . , (R−1)τ, . . . , Rτ−
1}, with communication occurring at time step {rτ : r ∈
[R] − 1}. In this setup, there are R communication rounds,
each separated by τ steps. The utility of the sequence of global
models {xr}r is measured by the dynamic regret

Regretd :=

R−1∑
r=0

τ−1∑
t=0

1

n

n∑
i=1

(fr,t
i (xr)− (fr)⋆). (1)

Here, fr,t
i (xr) is the loss incurred by the global model xr on

data Dr,t
i and (fr)⋆ is a dynamic optimal loss defined by

(fr)⋆ := min
x

fr(x) :=
1

nτ

n∑
i=1

τ−1∑
t=0

fr,t
i (x).

The term dynamic refers to a regret measure that compares the
loss incurred by our algorithm to a sequence of time-varying
optimal losses, as opposed to the commonly used static regret

Regrets :=

R−1∑
r=0

τ−1∑
t=0

1

n

n∑
i=1

(fr,t
i (xr)− fr(x⋆)),

where x⋆ represents an optimal model, in the optimal solution
set X ⋆ that minimizes the cumulative loss over entire data,

x⋆ ∈ X ⋆ := argminx

R−1∑
r=0

τ−1∑
t=0

1

n

n∑
i=1

fr,t
i (x).

Regrets, which compares an algorithm’s performance to a
single, globally optimal model, is reasonable when all data is
available in advance. In contrast, Regretd compares against a
sequence of optimal models and accounts for how the optimal
solution may shift under changing conditions. This is more

stringent, but also more relevant in many OFL settings [27],
[28]. For example, in disease prediction, the best predictor
may vary with season , and in recommendation systems, user
preferences often evolve over time.

In our paper, we aim to learn a series of models {xr}r that
minimizes Regretd while satisfying privacy constraints.

Privacy threat model. We consider an honest-but-curious
server and eavesdroppers capable of intercepting the commu-
nication between the server and the learners, as illustrated in
Fig. 1. To protect privacy, each learner adds temporally cor-
related noise locally at each local update before transmitting
information to the server. As a result, the noise across time is
not independent. We aim to guarantee local differential privacy
of each client’s data, even if the exchanged information is
observed by attackers, i.e., the server and the eavesdroppers.
When a client with data Dr,t

i arrives, the learner obtains the
client’s data and calculates the gradient ∇fr,t

i to update the
local model once, and then discards the data without storing
it. We assume that the original client data provided to the
learner is not accessible to the attackers, as this process is
not public. Since our algorithm transmits local gradient infor-
mation, we use the MF mechanism for each learner i to add
correlated noise to each local gradient. Specifically, the privacy
protection mechanism in our algorithm has streaming inputs
{∇f0,0

i , . . . ,∇fr,t
i } (i.e., all gradients processed by learner i

so far) and streaming outputs consisting of noisy prefix sums
{∇f0,0

i ,∇f0,0
i +∇f0,1

i , . . . ,∇f0,0
i +· · ·+∇fr,t

i }, which refers
to continual release. In addition, inputs are adaptive, meaning
that the next input ∇fr,t+1

i depends on previous outputs. This
requires us to account for a more powerful attacker who can
influence input selection; nevertheless, our algorithm remains
LDP under adaptive continual release.

We quantify privacy leakage via LDP. We define the ag-
gregated dataset of learner i over the entire time horizon as
Di = {Dr,t

i : r ∈ [R] − 1, t ∈ [τ ] − 1}. LDP is used over
neighboring datasets Di and D′

i that differ by a single entry
(for instance, replacing Dr,t

i by Dr,t
i

′
). We use the following

LDP definition:

Definition II.1. A randomized algorithm M satisfies (ϵ, δ)-
LDP if for any pair of neighboring datasets Di and D′

i, and
for any set of outcomes O within the output domain of M,

Pr[M(Di) ∈ O] ≤ eϵ Pr [M (D′
i) ∈ O] + δ.

The level of privacy protection is quantified by two parameters
(ϵ, δ) where smaller values indicate stronger protection.

III. ALGORITHM

In this section, we present the proposed algorithm and a
privacy-preserving mechanism that utilizes correlated noise via
matrix factorization.

A. Proposed Algorithm

We propose a locally differential private OFL algorithm
outlined in Algorithm 1. Key features of our algorithm include
the use of temporally correlated noise to protect privacy and
the use of local updates to reduce communication frequency
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between the server and learners. Mathematically, the proposed
algorithm can be re-written as the updates

zr,t+1
i = zr,ti − η

(
∇fr,t

i (zr,ti ) + (br,t − br,t−1)ξi
)
,

zr,τi = xr − ητ

(
gri +

1

τ
(br,τ−1 − br−1,τ−1)ξi

)
,

xr+1 = xr − η̃

(
gr +

1

τ
(br,τ−1 − br−1,τ−1)ξ

)
,

(2)

where gri = 1
τ

∑τ−1
t=0 ∇fr,t

i (zr,ti ), gr = 1
n

∑n
i=1 g

r
i , and ξ =

1
n

∑n
i=1 ξi. The equivalence of (2) and Algorithm 1 is derived

in Supplementary.
Inspired by the single-machine online learning, we imple-

ment Line 9 in Algorithm 1 using the MF mechanism.

Algorithm 1 Proposed Algorithm

1: Input: R, τ, η, ηg , ξi, x
0, b0,−1 = 0, br,−1 = br−1,τ−1

2: Set η̃ = ηηgτ
3: for r = 0, 1, . . . , R− 1 do
4: Learner i
5: Receive xr from the server
6: Set zr,0i = xr

7: for t = 0, 1, . . . , τ − 1 do
8: Compute ∇fr,t

i := ∇fr,t
i (zr,ti )

9: Use MF to obtain

Sr,t
i := ∇f0,0

i + · · ·+∇fr,t
i + br,tξi

10: Set ∇̂fr,t
i = Sr,t

i − Sr,t−1
i

11: Update zr,t+1
i = zr,ti − η∇̂fr,t

i

12: end for
13: Set ĝri := 1

ητ (x
r − zr,τi ) = 1

τ

∑τ−1
t=0 ∇̂fr,t

i

14: Transmit ĝri to the server
15: Server
16: Update xr+1 = xr − η̃ 1

n

∑n
i=1 ĝ

r
i

17: end for
18: Output: {x1, . . . , xR}

B. Adding Correlated Noise via MF

MF has recently been used to generate correlated noise to
enhance utility and privacy of single-machine OL [7], [15].
These papers assume x0 = 0 and express the iterates of a
gradient algorithm as xr+1 = − η

∑r
r̃=0 g

r̃, ∀ r ∈ [R] − 1,
where gr̃ is the gradient direction at iteration r̃. Consequently,
the key DP objective is to estimate the prefix sums { g0, g0+
g1, . . . , g0 + · · ·+ gR−1} over the individual gradients. Due
to the distributed nature of FL and its use of local updates,
this approach can not be applied directly to our setting. When
learner i updates its local model via zr,τi = xr − η τ gri
(omitting noise for clarity), it begins from a global parameter
xr that incorporates other learners’ updates, so zr,τi cannot be
viewed as a simple prefix sum of gri .

Instead, a new approach is needed. In our design, we focus
on the difference ∇̂fr,t

i = Sr,t
i −Sr,t−1

i (Line 10 in Algorithm
1) to enable correlated noise injection and preserve LDP.

In the following, we show that our algorithm can be inter-
preted as post-processing [9] of {∇f0,0

i + b0,0ξi, . . . ,∇f0,0
i +

· · ·+∇fR−1,τ−1
i + bR−1,τ−1ξi}. With b−1,τ−1 = b0,−1 = 0

and x0 = 0, repeated application of the last step in (2) yields

xr = −η̃

(
r−1∑
r̃=0

gr̃ +
1

τ
br−1,τ−1ξ

)

= −η̃
1

n

n∑
i=1

(
r−1∑
r̃=0

gr̃i +
1

τ
br−1,τ−1ξi

)

= −η̃
1

n

n∑
i=1

1

τ

(
∇f0,0

i + · · ·+∇fr−1,τ−1
i + br−1,τ−1ξi

)
.

With this equality, we observe that both the transmitted vari-
ables, xr and ĝri in Lines 5 and 14 of Algorithm 1, are post-
processed versions of the noisy prefix sums. It is, therefore,
sufficient to release noisy prefix sums privately. To this end, we
use MF. For mathematical clarity, we arrange the Rτ entries of
{∇f0,0

i +b0,0ξi, . . . ,∇f0,0
i + · · ·+∇fR−1,τ−1

i +bR−1,τ−1ξi}
as the Rτ rows of an Rτ × d matrix, resulting in

AGi +Bξi, (3)

where A is a lower triangular matrix with all entries on and
below the diagonal equal to 1. Although each entry of ξi is
independent, the multiplication by the matrix B introduces
correlations among the rows of Bξi which complicates the
privacy analysis. A strategic approach to address this is to
decompose the matrix A as A = BC, and use B to construct
temporally correlated noise. By substituting A = BC into (3)
and factoring out B, we have

B(CGi + ξi). (4)

Here, the noise ξi with iid entries is added to CGi. The
privacy loss of (4) can then be interpreted as the result of
post-processing following a single application of the Gaussian
mechanism [8].

Below, we present three state-of-the-art methods for imple-
menting MF: (i) the binary tree mechanism, (ii) solving MF
with optimization techniques, and (iii) using Toeplitz matrices.

Example (i): The binary tree mechanism releases dif-
ferentially private prefix sums based on selected information
computed hierarchically. In the binary tree, each leaf node
stores an input value, while internal nodes store the sum of
their left and right children. To ensure privacy, zero-mean
Gaussian noise with variance V 2

i is added when a node
releases its stored value. The prefix sums are estimated from
the outputs of a subset of the nodes. Fig. 2 illustrates the case
of R = τ = 2 and W = 7 nodes. Here, sequentially releasing
the 1st node, the 3rd node, the sum of the 3rd and 4th nodes,
and the 7th node (shown as dark nodes), allows us to estimate
the prefix sums.

Although the noise added at each node is independent,
the noise in the prefix sums will be correlated, as seen
in (5). This correlation can improve utility. The number of
ones in each column cr,t of C represents how many times
the input ∇fr,t

i appears across all nodes, which is at most
log2(Rτ) + 1. Meanwhile, the number of ones in each row
br,t of B corresponds to the number of dark nodes used to
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
∇f0,0

i

∇f0,0
i +∇f0,1

i

∇f0,0
i +∇f0,1

i +∇f1,0
i

∇f0,0
i +∇f0,1

i +∇f1,0
i +∇f1,1

i


︸ ︷︷ ︸

AGi

+


ξ1i
ξ3i

ξ3i + ξ4i
ξ7i


︸ ︷︷ ︸

Bξi

=


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 1

︸ ︷︷ ︸
B

(

1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1
1 1 1 1

︸ ︷︷ ︸
C


∇f0,0

i

∇f0,1
i

∇f1,0
i

∇f1,1
i


︸ ︷︷ ︸

Gi

+



ξ1i
ξ2i
ξ3i
ξ4i
ξ5i
ξ6i
ξ7i

︸︷︷︸
ξi

)
. (5)

Fig. 2: Binary tree mechanism

estimate the prefix sum ∇f0,0
i + · · ·+∇fr,t

i , which is at most
log2(Rτ). This leads to the bounds:

∥cr,t∥2≤ log2(Rτ) + 1, ∥br,t∥2≤ log2(Rτ), ∀r, t. (6)

From C, we can calculate the noise variance V 2
i added to

each node in the tree to satisfy a fixed privacy budget, while
B allows us to quantify the impact of noise on the utility.

Remark III.1 (Comparison with independent noise). For
ease of comparison, we also use a special tree to realize
the addition of independent noise. This tree has only leaves,
i.e., the height of the tree is 0. In this case, C = I and
B = A. When a leaf changes, it affects only one in the
tree. However, since all leaves are dark nodes, we must sum
Rτ leaves to estimate ∇f0,0

i + · · ·+∇fR−1,τ−1
i . This means

that ∥cr,t∥2= 1,∀r, t, and ∥bR−1,τ−1∥2= Rτ . Intuitively,
compared to correlated noise, using independent noise adds
less variance (1 vs log2(Rτ) + 1) to each node in the tree
but introduces more noise overall (Rτ vs log2(Rτ)), resulting
in worse utility. We will formally prove the advantage of
correlated noise over independent noise in Corollary IV.11.

Example (ii): The binary tree is a special case of MF,
which offers more flexibility and the possibility of optimizing
the factors B and C to improve performance [7], [8].

For instance, the minimal ℓ2-norm solution for the linear
equation A = BC is given by AC†, where C† is the Moore-
Penrose pseudo-inverse of C. Denisov et al. [8] therefore
proposed to construct the matrix factors B,C ∈ RRτ×Rτ by
solving the following optimization problem:

min
C∈RRτ×Rτ

∥AC†∥2F , s. t. C ∈ V, max
r,t

∥cr,t∥= 1, (7)

where V is a linear space of matrices. A fixed-point algorithm
to solve (7) was given in [8, Theorem 3.2]. Note that the
factorization only requires prior knowledge of R and τ , and
can be calculated offline before the algorithm begins.

Example (iii): The optimization formulation (7) includes
a constraint maxr,t∥cr,t∥= 1 to limit the sensitivity and uses
an objective function to minimize ∥B∥2F . Empirically, this
leads to higher utility, but it is challenging to derive theoretical
bounds on ∥B∥2F . To address this issue, [15] proposed to use
the following Toeplitz matrix construction for B and C:

B = C =


h(0) 0 · · · 0
h(1) h(0) · · · 0

...
...

. . .
...

h(Rτ − 2) h(Rτ − 3) · · · 0
h(Rτ − 1) h(Rτ − 2) · · · h(0)

 ,

where h(j) =

{
1, j = 0,(
1− 1

2j

)
h(j − 1), j ≥ 1.

Thus, both B

and C are Toeplitz matrices with all diagonal entries equal to
1. Furthermore, [15, Section 5.1] proved that

∥cr,t∥2≤ ∥c0,0∥2≤ 1 +
1

π
ln

(
4Rτ

5

)
,

∥br,t∥2≤ ∥bR−1,τ−1∥2≤ 1 +
1

π
ln

(
4Rτ

5

)
, ∀r, t,

(8)

which is of similar order as the results of (6) derived from the
binary tree method.

As noted in Section I-B, Denisov et al. [8] found that
the MF mechanism in Example (ii) outperforms the binary-
tree method in Example (i) experimentally. Henzinger et
al. [15] provided a theoretical explanation for this, showing
that the MF mechanism in Example (iii) achieves a constant
improvement over Example (i). In this paper, we use Example
(iii) to construct upper bounds for B and C in our analysis
and compare Examples (i), (ii), and (iii) in our experiments.

IV. ANALYSIS

We will now derive a dynamic regret bound for Algorithm
1 solving a class of nonconvex problems subject to (ϵ, δ)-LDP.

A. Preliminaries

We impose the following assumptions on the loss functions.

Assumption IV.1. Each loss function fr,t
i is L-smooth, i.e.,

for any x, y, there exists a constant L such that

fr,t
i (y) ≤ fr,t

i (x) + ⟨∇fr,t
i (x), y − x⟩+ L

2
∥y − x∥2.

Assumption IV.2. Each loss function fr,t
i has bounded gra-

dient, i.e., for any x, there exists a constant Bg such that

∥∇fr,t
i (x)∥≤ Bg.
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Assumption IV.3. For any xr, xr
ξ , there exists a constant σ

such that ∥Pxr

X⋆ −P
xr
ξ

X⋆∥≤
√
σ∥xr − xr

ξ∥.

Assumption IV.4. Consider the aggregated loss function fr

and its optimal solution set X ⋆
r := argminx f

r(x). For any x,
there exists constants α and µ such that

α(fr(x)− (fr)⋆) + ⟨∇fr(x),Px
X⋆

r
−x⟩+ µ

2
∥Px

X⋆
r
−x∥2≤ 0.

Assumption IV.1 is standard in the optimization literature.
Assumption IV.2 is frequently invoked in DP research to
ensure bounded sensitivity [29], [30], and it is consistent
with Lipschitz continuity of fr,t

i which is often assumed in
the online learning literature [1], [8]. Assumption IV.3 is a
regularity condition that is necessary for our analysis since
X ⋆ for a nonconvex problem may not be convex. We focus on
a class of nonconvex problems that satisfy Assumption IV.4.
Some examples that satisfy Assumptions IV.3 and IV.4 can be
found in [31], [32]. Below, we provide relevant examples of
such problems using the following definitions.

Definition IV.5. For constants µQSC, µWC, cPL, cEB, cQG, we
introduce the following conditions of loss functions fr:

• Quasi Strong Convexity (QSC) [33], [34]

(fr)⋆ ≥ fr(x)+⟨∇fr(x),Px
X⋆

r
−x⟩+ µQSC

2
∥Px

X⋆
r
−x∥2.

• Weak Convexity (WC)

fr(y) ≥ fr(x) + ⟨∇fr(x), y − x⟩ − µWC

2
∥y − x∥2.

• Polyak-Łojasiewicz Inequality (PŁ)

cPL · (fr(x)− (fr)⋆) ≤ 1

2
∥∇fr(x)∥2.

• Error Bound (EB)

cEB · dist(x,X ⋆
r ) ≤ ∥∇fr(x)∥.

• Quadratic Growth Condition (QG)
cQG

2
· dist2(x,X ⋆

r ) ≤ fr(x)− (fr)⋆.

If fr satisfies QSC, then Assumption IV.4 holds with
α = 1, µ = µQSC. It is well-known that, under the L-
smoothness condition of Assumption IV.1, the PŁ, EB, and
QG conditions are weaker than QSC. To illustrate this, we
provide a quantitative relationship between the conditions
QSC, PŁ, EB, and QG.

Lemma IV.6 (Theorem 2 in [35]). The aggregated loss
function fr satisfies the following implications:

QSC ⇒ EB and PŁ ⇒ QG

with cEB = µQSC and cQG = cPL/2. If fr is L-smooth, then
EB ⇒ PŁ with cPL = c2EB/L.

With Lemma IV.6, we prove that Assumption IV.4 holds
under PŁ, EB, or QG, when the aggregated loss function fr

is further assumed to be µWC-weakly convex with µWC ≤ L.

Corollary IV.7. Suppose that Assumption IV.1 holds and
the aggregated function fr satisfies the µWC-weak convexity
condition. Additionally, assume that one of the following

conditions holds: QG, PŁ, or EB with c := cQG = cPL/2 =
c2EB/2L. If µWC < c, then Assumption IV.4 is satisfied for any
α such that α ∈ (0, (c−µWC)/L), with µ = (c−µWC−αL)/2.

Proof. See Appendix A. □

In the next section, we will demonstrate how to use As-
sumption IV.4 to manage correlated noise and drift errors due
to local updates, ultimately establishing an upper bound on
the dynamic regret.

B. Privacy-Utility Analysis

We begin with a lemma that quantifies the amount of noise
that is needed for privacy protection.

Lemma IV.8. Under Assumption IV.2 and using the MF
mechanism (4), if the variance of the DP noise satisfies

V 2
i =

2B2
g maxr,t∥cr,t∥2

ρ
,

ρ =

(√
ϵ+ ln

1

δ
−
√
ln

1

δ

)2

,

then Algorithm 1 satisfies (ϵ, δ)-LDP under adaptive continual
release. Specifically, for matrix factorization technique in
Example (iii), we have V 2

i ≤ O
(
ln(Rτ)B2

g
ln 1

δ

ϵ2

)
, ∀i.

Proof. See Appendix B. □

Next, we give a lemma that assesses the impact of DP
noise on the utility. Inspired by research in the single-machine
setting [14], [36], we use a perturbed iterate analysis technique
to control the impact of the DP noise on utility. Noticing
that the temporally correlated noise (br,τ−1 − br−1,τ−1)ξ
in (2) represents the difference in noise between successive
communication rounds, we define the virtual variable

xr
ξ := xr +

η̃

τ
br−1,τ−1ξ

and rewrite the last step in (2) as:

xr+1
ξ = xr

ξ − η̃ · 1
τ

τ−1∑
t=0

1

n

n∑
i=1

∇fr,t
i (zr,ti ). (9)

Intuitively, the virtual variable xr
ξ is introduced to remove

the DP noise from xr. Its updates use gradient information
obtained without incorporating the DP noise, as seen in (9). By
bounding the distance between xr

ξ and the optimal solution set
X ⋆, we establish the following lemma regarding the dynamic
regret of the global models x0, . . . , xR−1.

Lemma IV.9. Under Assumptions IV.1–IV.4, if η̃ ≤ α
8L ,

Algorithm 1 satisfies

Regretd
Rτ

≤
E∥x0

ξ − P
x0
ξ

X⋆∥2

αRη̃
+ Ŝr,

where

Ŝr :=
24L(1 + σ)η̃2

α2R
∥BR∥2F

dV 2

τ2
+

(12L+ αµ)CR

α2R

+
1

α

(
η̃ +

α

12L
+

1

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2),
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TABLE I: Comparison of related works

Work Problem With DP DP Noise Regret Convexity Local Updates Regret Bound

Our OFL ✓
Correlated Dynamic Nonconvex ✓

[1] 1
Rη̃

+ η̃2

η2
g
B2

g + (1 + n
η2
g
)η̃(ln(Rτ))2 · η̃

dB2
g

nτ2

(ln 1
δ
)

ϵ2
+ CR

R

Independent [1] 1
Rη̃

+ η̃2

η2
g
B2

g + (1 + η̃n
η2
g
)τ · η̃

dB2
g

nτ2

(ln 1
δ
)

ϵ2
+ CR

R

[3] OFL ✓ [2] Independent Static Convex ✗ [2] 1
Rη

+ ηB2
g + η

dB2
g

nτ2

(ln 1
δ
)

ϵ2

[8] OL ✓ Correlated Static Convex - [3] 1
Rη

+ ηBg ln(Rτ)
√
dBg√
nτ

√
ln( 1

δ
)

ϵ
+ ηB2

g

[1] OFL ✗ - Static Convex ✓ [4] 1
Rη̃

+ η̃B2
g

[25] OL ✗ - Dynamic Nonconvex - [5] 1
Rη

+ η + C̃R
R

[1] See (10) and Corollary IV.11.
[2] See [3, Theorem 1]. For ease of comparison, we use the fully connected graph, (ϵ, δ)-LDP, Gauss noise, and batch size as 1.
[3] See [8, Proposition 4], where we have substituted the same upper bounds of ∥br,t∥2 and ∥cr,t∥2 as in our paper to enhance the original

results from [8, Proposition 4]. Compared our results with [8], the difference in dependency on ϵ and δ stems from distinct proof techniques.
Simply put, we use 2aT b ≤ ∥a∥2+∥b∥2, whereas [8] applies aT b ≤ ∥a∥∥b∥.

[4] Here, the regret in [1, Theorem 1] is defined on the local models, whereas ours is defined on the released global model.
[5] Here,

∑R−1
r=0 ∥x

⋆
r − x⋆

r+1∥≤ C̃R where x⋆
r ∈ argminx f

r(x).

CR :=
∑R−1

r=0 E∥Pxr

X⋆
r
−Pxr

X⋆∥2, V 2 = V 2
i /n, and ∥BR∥2F :=

∥b0,τ−1∥2+ · · ·+ ∥bR−1,τ−1∥2.

Proof. See Appendix C. □

The term Sr in Lemma IV.9 encapsulates multiple distinct
sources of error, including the V 2-term caused by DP noise;
the CR-term caused by the dynamic environment; and the Bg-
term which arises from the drift error due to local updates.

Substituting Lemma IV.8 and ∥BR∥2F≤ O(R ln(Rτ)) into
Lemma IV.9, we obtain the following privacy-utility trade-off.

Theorem IV.10 (Main theorem). Under Assumptions IV.1-
IV.4, if η̃ ≤ α

8L , Algorithm 1 subject to (ϵ, δ)-LDP satisfies

Regretd
Rτ

≤ O
(

1

Rη̃
+

η̃2

η2g
B2

g (10)

+

(
1 +

n

η2g

)
η̃2(ln(Rτ))2

dB2
g(ln

1
δ )

nτ2ϵ2
+

CR

R

)
.

In particular, if we let η̃ = O(R− 1
3 (ln(Rτ))−

2
3 ), it holds that

Regretd
Rτ

≤ O

(
(ln(Rτ))

2
3

R
2
3

+
B2

g

η2gR
2
3 (ln(Rτ))

4
3

+

(
1 +

n

η2g

)
(ln(Rτ))

2
3

R
2
3

dB2
g(ln

1
δ )

nτ2ϵ2
+

CR

R

)
.

Proof. See Appendix D. □

In Theorem IV.10, the errors are due to the initial error, the
local updates, the DP noise, and the dynamic environment,
respectively. We have the following observations.

• Our perturbed iterate analysis effectively controls the
impact of DP noise on the utility. The DP noise error term
is O((ln(Rτ))

2
3 /R

2
3 ), which decreases as R increases.

The theoretical advantages of correlated noise over inde-
pendent noise are further discussed in Section IV-C.

• The term CR :=
∑R−1

r=0 E∥Pxr

X⋆
r
−Pxr

X⋆∥2 captures the
changes in the solution set X ⋆

r over time relative to a

fixed solution set X ⋆. This variation is unavoidable in
dynamic regret [26, Theorem 5]. Intuitively, when the
environment changes rapidly, online learning algorithms
face greater challenges in achieving high utility.

• Establishing a sublinear regret bound for nonconvex
problems, even for static regret, poses significant chal-
lenges [24, Proposition 3]. In section IV-D, we show
that the error due to CR can be improved when we
consider static regret bound under the strongly convex
(SC) condition.

C. Comparison of Correlated Noise and Independent Noise

If we replace the correlated noise in Algorithm 1 with
independent noise for privacy protection, as specified in Sup-
plementary, we can derive the following results.

Corollary IV.11 (Independent noise). Under Assump-
tions IV.1-IV.4, if η̃ ≤ α

8L , Algorithm 1 with independent noise
subject to (ϵ, δ)-LDP satisfies

Regretd
Rτ

≤ O

(
1

Rη̃
+

η̃2B2
g

η2g
+
(
1 +

η̃n

η2g

) η̃dB2
g

nτ

(ln 1
δ )

ϵ2
+

CR

R

)
.

Proof. See Supplementary. □

Comparing Corollary IV.11 for independent noise with (10)
for correlated noise, we find that the use of correlated noise re-
sults in the smaller regret bound when η̃ ≤ τ

(1+n/η2
g)(ln(Rτ))2 .

D. Static Regret Under Strongly Convex (SC) Condition

To improve the dependence on CR, we establish a static
regret bound under the SC condition.

Corollary IV.12 (Static regret under SC). Assume the loss
function fr to be strongly convex, i.e., there exists a constant
µSC such that

fr(x)− fr(x⋆) +
µSC

2
∥x− x⋆∥2≤ ⟨∇fr(x), x− x⋆⟩ , ∀x,
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where x⋆ := argminx
∑R−1

r=0 fr(x). Then under Assumpi-
tions IV.1–IV.3, if η̃ ≤ 1

10L(ln(Rτ)) and η̃ = O((R ln(Rτ))−
1
2 ),

Algorithm 1 subject to (ϵ, δ)-LDP satisfies

Regrets
Rτ

≤ O

(
(ln(Rτ))

1
2

R
1
2

+
1

R ln(Rτ)

B2
g

η2g

+

(
1 +

n

η2g

)
(ln(Rτ))

1
2

R
1
2

dB2
g(ln

1
δ )

nτ2ϵ2
+

(ln(Rτ))
1
2

R
1
2

CR

R

)
,

where CR :=
∑R−1

r=0 ∥x⋆ − x⋆
r∥2 and x⋆

r := argminx f
r(x).

Proof. See Supplementary. □

In Corollary IV.12, the error term caused by CR converges
at the rate of O((ln(Rτ))

1
2 /R

3
2 ) for a static regret under SC.

Remark IV.13. Our analysis of nonconvex OFL is novel, even
without relying on LDP. In contrast to prior work on general
nonconvex [24] and pseudo-convex [25] online settings—both
of which assume learners have access to offline optimization
oracles and achieve O(R

1
2 ) regret bounds—our approach es-

tablishes a tighter O(R
1
3 ) bound, as shown in Theorem IV.10.

This improvement is particularly significant as it demonstrates
that better regret guarantees are achievable without requiring
offline oracles. While [26] achieves improved bounds under a
semi-strong convexity condition, their analysis fundamentally
depends on convexity. Our algorithm differs from these prior
methods in several other ways; see Section I-B3 for further
details. Overall, this work takes a step toward developing
nonconvex OFL methods tailored to loss functions with a
particular structure, leading to improved regret guarantees.
To the best of our knowledge, these results and techniques are
novel and cannot be directly derived from existing research on
nonconvex online optimization.

V. NUMERICAL EXPERIMENTS

We implement our algorithm with the three MF mechanisms
discussed above: MF (i) is the binary tree [37], MF (ii) is
the optimized factorization [8] and MF (iii) is the Toeplitz
matrix construction [15]. These variations are then compared
to the algorithms in [1] (which does not add privacy-preserving
noise) and [3] (which adds independent noise). For a fair
comparison, we modify the mini-batch SGD of size τ in [3] to
τ local updates, consistent with our approach. Each experiment
is conducted 10 times, with the results averaged and displayed
alongside error bars representing the standard deviation.

A. Logistic Regression

We consider the following logistic regression problem:

min
x∈R1×d

1

Rτn

R−1∑
r=0

τ−1∑
t=0

n∑
i=1

fr,t
i (x),

where the loss function for learner i is

fr,t
i (x) = log

(
1 + exp

(
−
(
xar,ti

)
br,ti

))
,

with (ar,ti , br,ti ) ∈ Rd × {−1,+1} representing the feature-
label pairs. The data is generated using the method described
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Fig. 3: Comparison on logistic regression

in [38], which allows us to control the degree of heterogeneity
using two parameters, α and β.

In our first set of experiments, we set the dimensionality to
d = 100 and use n = 20 learners. Each learner is responsible
for 4000 clients, who arrive sequentially in steps, with τ = 4
and R = 1000. The heterogeneity parameters are set to
(α, β) = (0.1, 0.1), and we experiment with two different
privacy budgets: (ϵ, δ) ∈ {(2, 10−3), (0.5, 10−3)}.

The results are presented in Fig. 3. Of the four curves
shown, all except the one corresponding to independent noise
(which uses a smaller step size) share the same step size.
As seen in Fig. 3, under both privacy budgets, the curves
for our algorithms with binary tree, optimized factorization,
and Toeptitz matrix closely follow the curve of the noiseless
case. With a stricter LDP budget (0.5, 10−3), the variance
in our algorithms increases slightly. Our algorithms with
optimized factorization and Toeplitz matrix outperform binary
tree, consistent with the findings in [8], [15]. In contrast, under
privacy budgets (2, 10−3) and (0.5, 10−3), the method with
independent noise has to use a small step size, leading to
low accuracy. This highlights the clear advantage of using
correlated noise over independent noise.

B. Training of Convolutional Neural Networks

We explore the training of a convolutional neural network
(CNN) using the MNIST dataset [39]. The CNN architecture
includes two convolutional layers, each with 32 filters of size
3 × 3 and a max-pooling layer of size 2 × 2. These layers
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Fig. 4: Ablation and comparison on CNN classification under (2, 10−3)-LDP budget

feed to two fully connected layers, containing 64 and 10
units, respectively. The hidden layers employ ReLU activation
functions, while the output layer uses a softmax activation. The
training is performed using the cross-entropy loss function.

The MNIST dataset, containing 60,000 images of hand-
written digits (0-9), is used for training. To introduce data
heterogeneity, 30,000 images are randomly distributed evenly
across 10 learners (3,000 per learner). The remaining 30,000
images are distributed unevenly, with all samples of digit l
assigned to learner l+1. We use 10,000 samples for testing to
evaluate the accuracy of the global model on the server. The
privacy budget is set to (2, 10−3)-LDP, and τ ∈ {1, 2, 4}.

In this set of experiments, we compare algorithms with
correlated noise, independent noise, and without DP noise.
We set different numbers of local updates τ to show its
impact on communication efficiency while fixing Rτ for a fair
comparison, ensuring that the total number of data points for
all runs remains the same. Our algorithm leverages optimized
factorization and Toeplitz matrices to construct correlated
noise. For all the algorithms, we use the same step sizes η
and ηg . The results are shown in Fig. 4.

First, compared to independent noise, using correlated noise
results in higher final accuracy. With independent noise, the
final accuracy is approximately 0.8, whereas our algorithms,
utilizing optimized factorization and Toeplitz matrices, achieve
around 0.9. This highlights the benefits of correlated noise
over independent noise. The final accuracy of both the noise-
free and correlated-noise algorithms is similar. However, in
the early stages, the accuracy with correlated noise is lower
than in the noise-free case. For example, when τ = 1 and the
communication round is 500, the accuracy of the noise-free
algorithm is around 0.7, while our correlated-noise algorithms
reach approximately 0.6.

Furthermore, we examine the impact of different values of
τ . All four subplots indicate that increasing τ from 1 to 4 re-
duces the number of communication rounds while maintaining
a similar level of accuracy. This is because a larger τ decreases
the communication frequency between learners and the server,
thereby reducing the total number of communication rounds.
Note, however, that τ should not be taken too large. As shown
in (10), when ηηg is fixed and τ varies, the second error term

caused by local updates satisfies
η̃2B2

g

η2
g

= τ2η2B2
g . Hence, if

τ is increased too much, the drift error will exceed the error
introduced by the DP noise and the accuracy will be reduced.

VI. CONCLUSIONS

We have proposed an LDP algorithm for OFL that uses
temporally correlated noise to protect client privacy under
adaptive continual release. To address the challenges caused by
DP noise and local updates with streaming non-IID data, we
used a perturbed iterate analysis to control the impact of the
DP noise on the utility. Moreover, we demonstrated how the
drift error from local updates can be managed under a class
of nonconvex loss functions. Subject to a fixed DP budget,
we established a dynamic regret bound that explicitly shows
the trade-off between utility and privacy. Numerical results
demonstrated the efficiency of our algorithm.
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APPENDIX

A. Proof of Corollary IV.7

On the one hand, by weak convexity of fr, we have

fr(y) ≥ fr(x) + ⟨∇fr(x), y − x⟩ − µWC

2
∥y − x∥22

for any y ∈ Rd. Moreover, Lemma IV.6 has established that
PŁ (resp. EB) with constant 2c (resp.

√
2cL) implies QG with

the constant c, i.e. that

fr(x)− (fr)⋆ ≥ c

2
∥x− y∥22

for y = P x
X⋆

r
. Combining the inequalities for this y yields

0 ≥ ⟨∇fr(x),Px
X⋆

r
−x⟩+ c− µWC

2
∥x− Px

X⋆
r
∥22. (11)

On the other hand, we know from Assumption IV.1 that

0 ≥ 1

nτ

n∑
i=1

τ−1∑
t=0

(fr,t
i (x)− fr,t

i (Px
X⋆

r
))− L

2
∥x− Px

X⋆
r
∥22

= fr(x)− (fr)⋆ − L

2
∥x− Px

X⋆
r
∥22, (12)

where we used ∇fr(Px
X⋆

r
) = 0 in the first inequality.

Mutiplying (12) by α ∈ (0, (c − µWC)/L) and adding the
resulting inequality to (11) yields

0 ≥ α(fr(x)− (fr)⋆) + ⟨∇fr(x),Px
X⋆

r
−x⟩

+
c− µWC − αL

2
∥Px

X⋆
r
−x∥2.

(13)

Thus, we have proved that Assumption IV.4 is satisfied with
µ = (c− µWC − αL)/2 > 0 for any α such that α ∈ (0, (c−
µWC)/L), which completes the proof of Corollary IV.7.

B. Proof of Lemma IV.8

To simplify the derivation, we base our privacy analysis on
the concept of ρ-zCDP [40], where ρ > 0 is a parameter to
measure the privacy loss. According to [40, Proposition 1.3],
ρ-zCDP can be transferred to (ϵ, δ)-LDP via

ρ =

(√
ϵ+ ln

1

δ
−
√

ln
1

δ

)2

≈ ϵ2

4 ln 1
δ

. (14)

In the following, we will establish the relationship between
the parameters ρ and V 2

i .
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By using the MF technique, our algorithm adds Gaussian
DP noise ξi into CGi via the Gaussian mechanism

CGi + ξi.

As shown in [8, Theorem 2.1], the MF technique can
protect privacy under adaptive continual release, and the
parameters are the same as in the non-adaptive contin-
ual release setting. It is therefore enough for us to an-
alyze privacy in a non-adaptive setting. With Gi =
{∇f0,0

i (z0,0i ); . . . ;∇fR−1,τ−1
i (zR−1,τ−1

i )} and G′
i denoting

the corresponding gradients evaluated on a neighboring
datasets D′

i, the sensitivity ∆ of CGi satisfies

∆ := ∥C(Gi −G′
i)∥F

= ∥c0,0
(
∇f0,0

i (z0,0i )−∇f0,0′

i (z0,0i )
)
∥F

≤ max
r,t

∥cr,t∥(2Bg).

(15)

Here, without loss of generality, we assume that Di and D′
i

differ in the first entry, implying that ∇f0,0
i ̸= ∇f0,0′

i . The
last inequality follows from Assumption IV.2.

By [40, Proposition 1.6], the Gaussian mechanism with
variance V 2

i satisfies ρ-zCDP with ρ = ∆2

2V 2
i

. Combining this
fact with (15), we find that our algorithm is ρ-zCDP if

V 2
i =

∆2

2ρ
≤ max

r,t
∥cr,t∥2(2Bg)

2 1

2ρ
, ∀i. (16)

This result holds for all MF techniques (i)–(iii). Specifically,
for MF technique (iii), by substituting the upper bound of
maxr,t∥cr,t∥2 given in (8) into (16), we have

V 2
i ≤ O

(
ln(Rτ)B2

g

ln 1
δ

ϵ2

)
, ∀i,

which completes the proof of Lemma IV.8.

C. Proof of Lemma IV.9

In the following analysis, we consider MF technique (iii)
with established theoretical bounds for ∥br,t∥2 and ∥cr,t∥2.

As shown in (2), mathematically, the local and global
updates of our Algorithm 1 can be rewritten as

zr,t+1
i = zr,ti − η

(
∇fr,t

i (zr,ti ) + (br,t − br,t−1)ξi
)
,

xr+1 = xr − η̃
(
gr +

1

τ
(br,τ−1 − br−1,τ−1)ξ

)
,

(17)

where zr,0i = xr, η̃ = ηgητ ,

gr =
1

nτ

τ−1∑
t=0

n∑
i=1

∇fr,t
i (zr,ti ),

and ξ = 1
n

∑n
i=1 ξi ∼ N (0, V 2)Rτ×d with V 2 = V 2

i /n.
We aim to achieve tighter convergence by exploiting the

structure of temporally correlated noise. To this end, we define

xr
ξ := xr +

η̃

τ
br−1,τ−1ξ

and re-write the global update in terms of this new variable

xr+1
ξ = xr

ξ − η̃gr. (18)

The corresponding iterates satisfy

E∥xr+1
ξ − P

xr+1
ξ

X⋆ ∥2 (19)

≤ E∥xr
ξ − P

xr
ξ

X⋆ −η̃gr∥2

= E∥xr
ξ − P

xr
ξ

X⋆∥2+η̃2E∥gr∥2

−2η̃E
〈
gr, xr

ξ − xr + xr − Pxr

X⋆ +Pxr

X⋆ −P
xr
ξ

X⋆

〉
≤ E∥xr

ξ − P
xr
ξ

X⋆∥2−2η̃E
〈
gr, xr − Pxr

X⋆

〉
︸ ︷︷ ︸

(IV)

+η̃2
(
1+

θ

η̃

)
E∥gr∥2︸ ︷︷ ︸

(V)

+
2η̃

θ

(
E∥xr

ξ − xr∥2+E∥Pxr

X⋆ −P
xr
ξ

X⋆∥2
)
,

where the first inequality follows from the optimality of P
xr+1
ξ

X⋆

and the second inequality uses Young’s inequality 2aT b ≤
θ1∥a∥2+ 1

θ1
∥b∥2 for θ1 > 0 with θ1 = θ. To bound (IV), we

use the definition of gr and add and subtract ∇fr,t
i (xr) to find

(IV) = −2η̃E
〈 1

nτ

τ−1∑
t=0

n∑
i=1

∇fr,t
i (xr), xr − Pxr

X⋆

〉
(20)

− 2η̃E
〈 1

nτ

τ−1∑
t=0

n∑
i=1

(∇fr,t
i (zr,ti )−∇fr,t

i (xr)), xr − Pxr

X⋆

〉
.

We refer to the two terms on the right hand of the above
equality as (IV.I) and (IV.II), respectively. For (IV.I), we use
Assumption IV.4 to get

(IV.I)

=− 2η̃E
〈 1

nτ

τ−1∑
t=0

n∑
i=1

∇fr,t
i (xr), xr − Pxr

X⋆
r
+Pxr

X⋆
r
−Pxr

X⋆

〉
≤− 2η̃α

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)− η̃µE∥xr − Pxr

X⋆
r
∥2

+ η̃

(
θE
∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (xr)

∥∥∥2 + 1

θ
E∥Pxr

X⋆
r
−Pxr

X⋆∥2
)
,

where the inequality follows from 2aT b ≤ θ∥a∥2+ 1
θ∥b∥

2 for
θ > 0 and the observation that Assumption IV.4 implies that〈 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (x), x− Px

X⋆
r

〉
≥ α

nτ

n∑
i=1

τ−1∑
t=0

(fr,t
i (x)− (fr)⋆) +

µ

2
∥x− Px

X⋆
r
∥2, ∀x.

For (IV.II), we have
(IV.II)

=−2η̃E
〈 1

nτ

τ−1∑
t=0

n∑
i=1

(∇fr,t
i (zr,ti )−∇fr,t

i (xr)), xr − Pxr

X⋆

〉

≤ 2η̃

µ
E

∥∥∥∥∥ 1

nτ

τ−1∑
t=0

n∑
i=1

(∇fr,t
i (zr,ti )−∇fr,t

i (xr))

∥∥∥∥∥
2

+
η̃µ

2
E∥xr − Pxr

X⋆∥2

≤ 2η̃

µ
E

∥∥∥∥∥ 1

nτ

τ−1∑
t=0

n∑
i=1

(∇fr,t
i (zr,ti )−∇fr,t

i (xr))

∥∥∥∥∥
2

+ η̃µE
(
∥xr − Pxr

X⋆
r
∥2+∥Pxr

X⋆
r
−Pxr

X⋆∥2
)
,
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where we use Young’s inequality with θ1 = 2/µ in the first
inequality and triangle inequality in the second inequality.
Now, substituting (IV.I) and (IV.II) into (IV) yields

(IV) ≤− 2η̃α

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

+ η̃θE

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (xr)

∥∥∥∥∥
2

+ η̃

(
1

θ
+ µ

)
E∥Pxr

X⋆
r
−Pxr

X⋆∥2

+
2η̃

µ
E

∥∥∥∥∥ 1

nτ

τ−1∑
t=0

n∑
i=1

(∇fr,t
i (zr,ti )−∇fr,t

i (xr))

∥∥∥∥∥
2

.

Next, for (V) in (19), we add and subtract ∇fr,t
i (xr) to find

(V)

= E

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

(∇fr,t
i (zr,ti )−∇fr,t

i (xr) +∇fr,t
i (xr))

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

(∇fr,t
i (zr,ti )−∇fr,t

i (xr))

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (xr)

∥∥∥∥∥
2

.

Substituting (IV) and (V) into (19), we have

E∥xr+1
ξ − P

xr+1
ξ

X⋆ ∥2−E∥xr
ξ − P

xr
ξ

X⋆∥2

≤ −2η̃α

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

+ 2cVI · E
∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

(∇fr,t
i (zr,ti )−∇fr,t

i (xr))
∥∥∥2︸ ︷︷ ︸

(VI)

+ 2cVII · E

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (xr)

∥∥∥∥∥
2

︸ ︷︷ ︸
(VII)

+
2η̃

θ

(
E∥xr

ξ − xr∥2+E∥Pxr

X⋆ −P
xr
ξ

X⋆∥2
)

+ η̃

(
1

θ
+ µ

)
E∥Pxr

X⋆
r
−Pxr

X⋆∥2,

(21)

where cVI := η̃2
(
1 + θ

η̃

)
+ η̃

µ and cVII := η̃2
(
1 + 3θ

2η̃

)
.

We use L-smoothness to bound the term (VI)

(VI) ≤ L2 1

nτ

n∑
i=1

τ−1∑
t=0

E∥zr,ti − xr∥2.

By repeatedly applying the local updates and substituting
br,−1 = br−1,τ−1, we thus have zr,ti = zr,0i −η

(
∇fr,0

i (zr,0i )+

· · ·+∇fr,t−1
i (zr,t−1

i )+(br,t−1−br−1,τ−1)ξi

)
for all t. Since

zr,0i = xr, it follows that

E∥zr,ti − xr∥2 (22)

= η2E
∥∥∥ t−1∑

t̃=0

∇fr,t̃
i (zr,t̃i ) + (br,t−1 − br−1,τ−1)ξi

∥∥∥2

≤ η2E

2
∥∥∥ t−1∑

t̃=0

∇fr,t̃
i (zr,t̃i )

∥∥∥2 + 2
∥∥∥(br,t−1 − br−1,τ−1)ξi

∥∥∥2


≤ η2(2τ2B2
g + 8max

r,t
∥br,t∥2dV 2

i ),

where we use 2E∥(br,t−1 − br−1,τ−1)ξi∥2≤ 4(E∥br,t−1ξi∥2
+E∥br−1,τ−1ξi∥2) and the bound E∥br,tξi∥2= ∥br,t∥2dV 2

i ≤
maxr,t∥br,t∥2dV 2

i for all r, t in the last step.
Substituting (22) into (VI) and V 2

i = nV 2 now gives

(VI) ≤ L2η2(2τ2B2
g + 8max

r,t
∥br,t∥2dnV 2).

To handle the term (VII), we use the L-smoothness to bound
the gradient norm with loss value suboptimality. To this end,
we start with the following inequality

fr,t
i (y) ≤ fr,t

i (x) + ⟨∇fr,t
i (x), y − x⟩+ L

2
∥y − x∥2.

By averaging the above inequality over t and i and optimizing
both sides of the resulting inequality w.r.t. y, we get

(fr)⋆ ≤ min
y

1

nτ

n∑
i=1

τ−1∑
t=0

fr,t
i (y)

≤ 1

nτ

n∑
i=1

τ−1∑
t=0

fr,t
i (x)− 1

2L

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (x)

∥∥∥∥∥
2

+
L

2
min
y


∥∥∥∥∥y −

(
x− 1

nτL

n∑
i=1

τ−1∑
t=0

∇fr,t
i (x)

)∥∥∥∥∥
2


=
1

nτ

n∑
i=1

τ−1∑
t=0

fr,t
i (x)− 1

2L

∥∥∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (x)

∥∥∥∥∥
2

,

which implies that∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (x)

∥∥∥2≤ 2L
( 1

nτ

n∑
i=1

τ−1∑
t=0

fr,t
i (x)−(fr)⋆

)
.

Substituting this inequality into (VII), we have

(VII) = E
∥∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

∇fr,t
i (xr)

∥∥∥2
≤ 1

nτ

n∑
i=1

τ−1∑
t=0

2LE(fr,t
i (xr)− (fr)⋆).

Next, we combine the derived upper bounds for (VI) and (VII),
the expressions for cVI and cVII and (21) to find

E∥xr+1
ξ − P

xr+1
ξ

X⋆ ∥2−E∥xr
ξ − P

xr
ξ

X⋆∥2 (23)

≤
(
η̃2
(
1 +

3θ

2η̃

)
4L− 2η̃α

)
︸ ︷︷ ︸

≤−η̃α

1

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

+

(
η̃2
(
1 +

θ

η̃

)
+

η̃

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2)

+
2η̃

θ

(
E∥xr

ξ − xr∥2+E∥Pxr

X⋆ −P
xr
ξ

X⋆∥2
)



13

+ η̃

(
1

θ
+ µ

)
E∥Pxr

X⋆
r
−Pxr

X⋆∥2.

We now need to choose θ to guarantee that(
η̃2
(
1 + 3θ

2η̃

)
4L− 2η̃α

)
≤ −η̃α, which holds if

η̃ +
3

2
θ ≤ α

4L
. (24)

The condition (24) will be checked later when we choose the
specific algorithm parameters.

Dividing both sides of (23) by η̃, we obtain

1

η̃
E∥xr+1

ξ − P
xr+1
ξ

X⋆ ∥2−1

η̃
E∥xr

ξ − P
xr
ξ

X⋆∥2 (25)

≤− α

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

+

(
η̃

(
1 +

θ

η̃

)
+

1

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2)

+
2

θ

(
E∥xr

ξ − xr∥2+E∥Pxr

X⋆ −P
xr
ξ

X⋆∥2
)

+

(
1

θ
+ µ

)
E∥Pxr

X⋆
r
−Pxr

X⋆∥2.

For notational convenience, we dote the last three terms in the
right-hand of (25) by Sr. We then rewrite the results as

α

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

≤ 1

η̃
E∥xr

ξ − P
xr
ξ

X⋆∥2−
1

η̃
E∥xr+1

ξ − P
xr+1
ξ

X⋆ ∥2+Sr.

(26)

Repeated application of (26) and use of Assumption IV.3 gives

1

R

R−1∑
r=0

1

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

≤
E∥x0

ξ − P
x0
ξ

X⋆∥2

αRη̃
+

∑R−1
r=0 Sr

αR
.

(27)

Substituting xr
ξ − xr = η̃

τ b
r−1,τ−1ξ and Assumption IV.3

yields

1

R

R−1∑
r=0

Sr (28)

≤
(
η̃

(
1 +

θ

η̃

)
+

1

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2)

+
1

θR

R−1∑
r=0

(2(1+σ)E∥ η̃
τ
br−1,τ−1ξ∥2+(1+θµ)E∥Pxr

X⋆
r
−Pxr

X⋆∥2).

Using the fact that

E∥br−1,τ−1ξ∥2= ∥br−1,τ−1∥2dV 2, (29)

we can use (27) to bound the regret as

Regretd
Rτ

:=
1

R

R−1∑
r=0

1

nτ

n∑
i=1

τ−1∑
t=0

E(fr,t
i (xr)− (fr)⋆)

≤
E∥x0

ξ − P
x0
ξ

X⋆∥2

αRη̃

+
2(1 + σ)η̃2

αθR
∥BR∥2F

dV 2

τ2
+

1

αθR

R−1∑
r=0

(1 + θµ)E∥Pxr

X⋆
r
−Pxr

X⋆∥2

+
1

α

(
η̃

(
1 +

θ

η̃

)
+

1

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2),

where ∥BR∥2F := ∥b0,τ−1∥2+ · · · + ∥bR−1,τ−1∥2. Due to the
last two terms in the above inequality, we need a large θ; but
θ must satisfy condition (24). Inspired by this, taking half of
the upper bound α/(4L) in condition (24) as 3

2θ, then we get

θ =
α

12L
and η̃ ≤ α

8L
.

Substituting θ = α
12L , then we have

Regretd
Rτ

≤
E∥x0

ξ − P
x0
ξ

X⋆∥2

αRη̃
(30)

+
24L(1 + σ)η̃2

α2R
∥BR∥2F

dV 2

τ2
+

(12L+ αµ)CR

α2R

+
1

α

(
η̃ +

α

12L
+

1

µ

)
2L2η2(2τ2B2

g + 8max
r,t

∥br,t∥2dnV 2),

where CR :=
∑R−1

r=0 E∥Pxr

X⋆
r
−Pxr

X⋆∥2. This completes the
proof of Lemma IV.9.

D. Proof of Theorem IV.10

In the following, we substitute the specific parameter values
given by our DP analysis and choose the step sizes to simplify
(30). Substituting the fact given in (8) that

max
r,t

∥br,t∥2≤ O(ln(Rτ)),

∥BR∥2F := ∥b0,τ−1∥2+ · · ·+ ∥bR−1,τ−1∥2≤ O(R ln(Rτ))

into (30), we have

Regretd
Rτ

≤O
(

1

Rη̃
+

η̃2

η2g
B2

g +

(
1+

n

η2g

)
η̃2 ln(Rτ)

dV 2

τ2
+

CR

R

)
,

where we use η̃ = ηηgτ . Next, we use the bound

V 2 =
V 2
i

n
≤ O

(
ln(Rτ)

B2
g

n

(ln 1
δ )

ϵ2

)
(31)

to get

Regretd
Rτ

≤ O
(

1

Rη̃
+

η̃2

η2g
B2

g +
CR

R

+

(
1 +

n

η2g

)
η̃2 ln(Rτ)dln(Rτ)

B2
g

n

(ln 1
δ )

τ2ϵ2

)
.

(32)

This completes the proof of (10).
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Let O( 1
Rη̃ ) = O(η̃2(ln(Rτ))2) and consider condition (24),

then we have η̃ = O
(
min

{
O(R− 1

3 (ln(Rτ))−
2
3 ), α

8L

})
=

O
(
R− 1

3 (ln(Rτ))−
2
3

)
and derive

Regretd
Rτ

≤ O

(
(ln(Rτ))

2
3

R
2
3

+
B2

g

η2gR
2
3 (ln(Rτ))

4
3

+

(
1 +

n

η2g

)
(ln(Rτ))

2
3

R
2
3

dB2
g(ln

1
δ )

nτ2ϵ2
+

CR

R

)
.

This completes the proof of Theorem IV.10.
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