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Abstract We study the issue of numerically solving the nonnegative inverse eigenvalue

problem (NIEP). At first, we reformulate the NIEP as a convex composite optimization

problem on Riemannian manifolds. Then we develop a scheme of the Riemannian linearized

proximal algorithm (R-LPA) to solve the NIEP. Under some mild conditions, the local and

global convergence results of the R-LPA for the NIEP are established, respectively. Moreover,

numerical experiments are presented. Compared with the Riemannian Newton-CG method

in [Z. Zhao, et al, Numer. Math., 140 (2018), pp. 827–855], this R-LPA owns better numerical

performances for large scale problems and sparse matrix cases, which is due to the smaller

dimension of the Riemannian manifold derived from the problem formulation of the NIEP

as a convex composite optimization problem.
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) is a special kind of inverse eigenvalue

problems which has been explored extensively in the literature and plays a key role in various

areas such as control design, linear complementarity problems, Markov chains, graph theory

and so on; see [2,3,9,10,19,28] and references therein. Recall that a matrix A ∈ Rn×n is

said to be a nonnegative matrix if its entries are all greater than or equal to zero, that

is, A ∈ Rn×n+ . An n-tuple (λ1, λ2, · · · , λn) ∈ Cn is said to be a realizable spectrum for

nonnegative matrix if there is a matrix A ∈ Rn×n+ such that its eigenvalues are λ1, λ2, · · · , λn.

Then the NIEP is formulated as follows:

Given (λ1, λ2, · · · , λn) a realizable spectrum for nonnegative matrix,

find a nonnegative matrix A such that its eigenvalues are λ1, λ2, · · · , λn.
(1.1)

Since (λ1, λ2, · · · , λn) is a realizable spectrum, {λ1, λ2, · · · , λn} is closed under complex

conjugation. Without loss of generality, one can assume

λ2i−1 = ai + bi
√
−1, λ2i = ai − bi

√
−1, i = 1, · · · , s; λi ∈ R, i = 2s+ 1, · · · , n,

where ai, bi ∈ R with bi 6= 0 for all i = 1, · · · , s. Define the following block diagonal matrix

Λ := blkdiag(λ
[2]
1 , · · · , λ[2]

s , λ2s+1, · · · , λn) with each λ
[2]
i :=

[
ai bi
−bi ai

]
.

Let O(n) denote the set of all orthogonal matrices, i.e., O(n) := {U ∈ Rn×n | UTU = In×n},
and set

V := {V ∈ Rn×n | Vij = 0 for all (i, j) satisfying i ≥ j or Λij 6= 0}. (1.2)

Then A is a solution of (1.1) if and only if A = U(Λ + V )UT with (U, V ) ∈ Rn×n × Rn×n

being a solution of the following inclusion problem

(U, V ) ∈ O(n)× V and U(Λ+ V )UT ∈ Rn×n+ ; (1.3)

see [28]. To solve problem (1.3), Zhao et al. [28] constructed a mapping Θ : Rn×n ×O(n)×
V → Rn×n by

Θ(W,U, V ) := W �W − U(Λ+ V )UT for each (W,U, V ) ∈ Rn×n ×O(n)× V, (1.4)
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where W � W is the Hadamard product of W and W . Thus, solving problem (1.3) is

equivalent to solving the following nonlinear matrix equation on the product manifold

Rn×n ×O(n)× V
Θ(W,U, V ) = 0. (1.5)

Zhao et al. [28] proposed a Riemannian inexact Newton-CG method for solving equation

(1.5) and established its global convergence results under the assumption that the derivative

operator of Θ is surjective at an cluster point. Note that the dimension of the underlying

space Rn×n ×O(n)×V of equation (1.5) is n2 + n(n−1)
2 + dimV (cf. [28]). The Riemannian

inexact Newton-CG method, as remarked in [28], has the following drawbacks or limitations:

– If the derivative operator at a cluster point is a sparse matrix, then it may fail to be

surjective.

– In large scale cases, numerical tests illustrate that Newton-CG method spends most of

computing times for solving the involved subproblem by CG method.

Observe that problem (1.3) is recast equivalently as the following optimization problem

on the Riemannian manifold M := O(n)× V:

min
(U,V )∈M

fp(U, V ) :=
1

p
dp(U(Λ+ V )UT ,Rn×n+ ) (1.6)

(assuming that problem (1.3) is solvable), where p ≥ 1 and dp(·,Rn×n+ ) is the distance

function of the set Rn×n+ . Note also that the target function fp in problem (1.6) is of the

special compositional structure with a convex outer function h : Rn×n → R and a smooth

inner function F : M → Rn×n, that is, fp = h ◦ F with h and F defined respectively by

h(·) := 1
pdp(·,Rn×n+ ) and

F (U, V ) := U(Λ+ V )UT for each (U, V ) ∈M = O(n)× V. (1.7)

Based on its special compositional structure, the development of efficient and rapid

optimization algorithms for convex composite optimization problem on linear spaces such as

Gauss-Newton method, Prox-descent algorithm and linearized proximal algorithms (LPAs),

has been made with a great deal of attention; see [6,11,14,15,17,25] and references therein.

With these observations, we develop a new type of efficient algorithms, i.e., Riemannian

linearized proximal algorithms (R-LPA), to solve problem (1.3) by extending the LPA type

algorithms of [14] in linear spaces to the Riemannian manifold setting. More precisely, we

propose a R-LPA (i.e., Algorithm 4 in Section 4) together with its globalized version R-GLPA

(i.e., Algorithm 5 in Section 4) to solve problem (1.6). Under a quasi-regular like condition

for F given by (1.7), superlinear local convergence of the R-LPA is established (see Theorem

3 in Section 4). Furthermore, the global convergence of the R-GLPA is also provided (see

Theorem 4 in Section 4). Notice that the dimension of the underlying manifold O(n) × V
of the optimization problem (1.6) is n(n−1)

2 + dimV which is n2 less than that of (1.5).

With utilizing this important property, numerical tests for the R-LPA and the R-GLPA

are implemented. Compared with the Riemannian Newton-CG algorithm (R-NCGA), the

R-GLPA has the following advantages:
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– The R-GLPA costs less CPU time than the R-NCGA. This merit appears more clearly

for large scale problems.

– For sparse matrix cases, the R-GLPA is much more efficient than the R-NCGA.

To furnish the tools to establish our main results, we study first in Section 3 the R-LPAs

for general convex composite optimization problems on Riemannian manifolds. We establish

local and global convergence results of the algorithms under the assumptions of local weak

sharp minima of order p for outer function and the quasi-regularity condition for the inner

function. The study of this issue is of independent interest. Applying the obtained results

in Section 3 to the NIEP, we obtain in Section 4 a R-LPA, together with its global version,

to solve the NIEP and establish their convergence results.

The organization of the present work is summarized as follows. We deal with the notation

and preliminary results used in the present paper in Section 2, while in Section 3, the

general forms of R-LPA for original convex composite optimization problems on Riemannian

manifolds are proposed and their local and global convergence results are established under

the assumptions of local weak sharp minima of order p and the quasi-regularity condition.

In Section 4, we apply this general R-LPA to solve the NIEP and establish both local and

global convergence results. Numerical experiments are reported in Section 5. The last section

summarizes the conclusions.

2 Notation and Preliminary Results

We recall some notation and notions about smooth manifolds used in the present paper which

are standard; see for example [8,12]. Let M be a smooth complete connected n-dimensional

Riemannian manifold with the Levi-Civita connection∇. Let x ∈M , and let TxM denote the

tangent space at x to M . Let 〈·, ·〉x be the scalar product on TxM with the associated norm

‖ · ‖x, where the subscript x is sometimes omitted. Let TM =
⋃
x∈M TxM be the tangent

bundle of M , which is naturally a manifold. For any two points x, y ∈M , let c : [0, 1]→M

be a piecewise smooth curve connecting x and y. Then the arc-length of c is defined by

l(c) :=
∫ 1

0
‖c′(t)‖dt, and the Riemannian distance from x to y by d(x, y) := infc l(c), where

the infimum is taken over all piecewise smooth curves c : [0, 1] → M connecting x and y.

Thus, the Riemannian distance d(·, ·) induces the original topology on M . For a smooth

curve c, a vector field X is said to be parallel along c if ∇c′V = 0. In particular, if c′ is

parallel along itself, then c is called a geodesic; thus, a smooth curve c is a geodesic if and

only if ∇c′c′ = 0. A geodesic c : [0, 1] → M joining x to y is minimal if its arc-length

equals its Riemannian distance between x and y. By the Hopf-Rinow theorem [8], (M, d) is

a complete metric space, and there is at least one minimal geodesic joining x to y for any

points x and y.

Let Y be a Banach space or a Riemannian manifold. We use BY (x, r) and BY [x, r] to

denote respectively the open metric ball and the closed metric ball at x with radius r, that

is,

BY (x, r) := {y ∈ Y | d(x, y) < r} and BY [x, r] := {y ∈ Y | d(x, y) ≤ r}.
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We often omit the subscript Y if no confusion occurs.

For each x ∈ M , the exponential map at x, expx : TxM → M is well-defined on TxM .

Recall a constant related to a point x ∈M : the injectivity radius rinj(x)

rinj(x) := sup {r > 0 : expx(·) is a diffeomorphism on B(0, r) ⊂ TxM} .

Let c : R→M be a smooth curve and let Pc,·,· denote the parallel transport along c, which

is defined by

Pc,c(b),c(a)(u) = X(c(b)), ∀a, b ∈ R and u ∈ Tc(a)M,

where X is the unique smooth vector field satisfying ∇c′(t)X = 0 and X(c(a)) = u. In

particular, we write Px,y for Pc,x,y in the case when c is the minimizing geodesic and no

confusion arises.

We recall from [1, p. 55] the notion of retraction on M .

Definition 1 A C∞ mapping R : TM →M is said to be a retraction on M if the following

assertion holds for each x ∈M (Rx denotes the restriction of R to TxM):

Rx0 = x, and DRx0 = ITxM , where ITxM denotes the identity mapping on TxM .

Remark 1 The exponential map is a special retraction on M (cf. [1, p. 56]).

Let R be a retraction on M . Let x̄ ∈M and r > 0. For simplicity, write

A(x̄, r) := {(y, u) ∈ TM | y ∈ B(x̄, r) and ‖u‖ < r}

and

Â(x̄, r) := {(y, u) ∈ TM | y ∈ B(x̄, r), ‖u‖ < r and Ry(tu) ∈ B(x̄, r) for each t ∈ [0, 1]}.

Since R is C∞, for each x̄ ∈M , there exist µx̄ > 0 and rx̄ > 0 such that

d(y,Ryu) ≤ µx̄‖u‖ for each (y, u) ∈ A(x̄, rx̄). (2.1)

If R is the exponential map, then (2.1) holds with µx̄ = 1.

Let F : M → Rm be continuously differentiable. We recall the notion of Lipschitz

continuity for the gradient DF . Let U ⊆M be such that for any two points x, y ∈ U there is

a unique minimal geodesic connecting x and y. Then DF is said to be Lipschitz continuous

on U with modulus L > 0, if

‖DF (y)−DF (x)Px,y‖ ≤ Ld(x, y) for each x, y ∈ U. (2.2)

DF is said to be local Lipschitz continuous at x̄ if there exists 0 < r < rinj(x̄) and Lr > 0

such that DF is Lipschitz continuous on B(x̄, r) with modulus Lr.

We close this section with the following useful lemma.

Lemma 1 Let x̄ ∈M . Suppose that DF is local Lipschitz continuous at x̄. Then, there exist

r > 0 and L > 0 such that for any (x, u) ∈ Â(x̄, r) it holds that

‖F (Rxu)− F (x)−DF (x)u‖ ≤ L

2
‖u‖2. (2.3)
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Proof By Lipschitz continuous assumption, there exist 0 < r < rinj(x̄) and Lr > 0 such that

‖DF (y)Py,x −DF (x)‖ ≤ Lrd(x, y) for each x, y ∈ B(x̄, r). (2.4)

By (2.1), without loss of generality, we assume that there is µx̄ > 0 such that

d(x,Rxu) ≤ µx̄‖u‖ for each (x, u) ∈ A(x̄, r).

Let L1 := sup(x,u)∈Â(x̄,r) ‖DF (Rxu)‖. Then by (2.4), one can check that L1 < +∞. Since R

is C∞, there exists L2 > 0 such that ‖DRxu−PRxu,xDRx0‖ ≤ L2‖u‖ for any (x, u) ∈ Â(x̄, r).

Let L = L1L2 +Lrµx̄. Then r, L are the desired ones. Indeed, fix (x, u) ∈ Â(x̄, r). Note that

‖DF (Rxu)DRxu−DF (Rxu)PRxu,x‖ = ‖DF (Rxu)(DRxu− PRxu,xDRx0)‖ ≤ L1L2‖u‖

(due to DRx0 = ITxM ) and

‖DF (Rxu)PRxu,x −DF (x)‖ ≤ Lrd(x,Rxu) ≤ Lrµx̄‖u‖.

Thus, by triangle inequality, we have that

‖DF (Rxu)DRxu−DF (x)‖ ≤ L‖u‖. (2.5)

Note further that

F (Rxu)− F (x)−DF (x)u =

∫ 1

0

DF (Rx(tu))DRx(tu)udt−DF (x)u.

This, together with (2.5), implies that

‖F (Rxu)−F (x)−DF (x)u‖ ≤
∫ 1

0

‖DF (Rx(tu))DRx(tu)−DF (x)‖dt‖u‖ ≤
∫ 1

0

Lt‖u‖dt‖u‖.

Hence, (2.3) is seen to hold.

3 Riemannian Linearized Proximal Algorithms and Convergence Analysis

Throughout the whole section, we always assume that p ∈ [1, 2), unless otherwise specified.

In this section, we shall study an inexact Riemannian linearized proximal algorithm to solve

the general convex composite optimization problem on a manifold M :

min
x∈M

f(x) := h(F (x)), (3.1)

where the outer function h : Rm → R is convex, and the inner function F : M → Rm is

continuously differentiable. The local convergence results of the algorithm are established

under the assumptions of the local weak sharp minima of order p for the outer function h and

the quasi-regular condition for the inner function F . We also develop a globalization version

for the algorithm by virtue of the backtracking line-search, and establish its convergence

result.
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We proceed with the (inexact) linearized proximal mapping and some basic properties.

Associated to (3.1), we denote by hmin and C the minimum value and the set of minima for

the function h respectively, that is,

hmin := min
y∈Rm

h(y) and C := arg min
y∈Rm

h(y). (3.2)

Let v > 0 and x ∈M . The linearized proximal mapping hx,v : TxM → R is defined by

hx,v(d) := h(F (x) + DF (x)d) +
1

2v
‖d‖2 for each d ∈ TxM. (3.3)

Associated to problem (3.1), we consider the inclusion

F (x) ∈ C, (3.4)

where C ⊆ Rm is defined by (3.2). For x ∈M , let Γ (x) be defined by

Γ (x) := {d ∈ TxM : F (x) + DF (x)d ∈ C}. (3.5)

The following lemma presents some useful properties of the linearized proximal mapping.

Lemma 2 Let v > 0 and ε≥ 0, and let x ∈M satisfying Γ (x) 6= ∅ and d ∈ TxM such that

hx,v(d) ≤ inf
y∈TxM

hx,v(y) + ε. Then the following statements hold:

(i) ‖d‖2 ≤ d2(0, Γ (x)) + 2vε,

(ii) h(F (x) + DF (x)d) ≤ hmin + 1
2vd2(0, Γ (x)) + ε.

Proof Let d̃ ∈ Γ (x) and recall the definition of hx,v. Then one has by assumption that

h(F (x) + DF (x)d) +
1

2v
‖d‖2 ≤ h(F (x) + DF (x)d̃) +

1

2v
‖d̃‖2 + ε.

Since h(F (x) + DF (x)d̃) = hmin (see (3.2) and (3.5)), it follows that

h(F (x) + DF (x)d) +
1

2v
‖d‖2 ≤ hmin +

1

2v
‖d̃‖2 + ε.

Taking the infimum for d̃ over Γ (x) on the right-hand side of the above inequality, we obtain

h(F (x) + DF (x)d) +
1

2v
‖d‖2 ≤ hmin +

1

2v
d2(0, Γ (x)) + ε, (3.6)

or equivalently,

1

2v
‖d‖2 ≤ hmin − h(F (x) + DF (x)d) +

1

2v
d2(0, Γ (x)) + ε.

Thus, (i) is seen to hold because hmin − h(F (x) + DF (x)d) ≤ 0 (by the definition of hmin in

(3.2)). Furthermore, (ii) follows from (3.6) directly. The proof is complete.
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3.1 Riemannian Linearized Proximal Algorithm

In view of practical computation, it could be very expensive to exactly solve the subproblem

(3.3) in each iteration. In this section, we first extend the inexact version of the linearized

proximal algorithm in linear space setting (i.e., [14, Algorithm 19]) to the Riemannian man-

ifold settings for solving problem (3.1), where inf
d∈TxM

hx,v(d) is only solved approximately in

each iteration (with progressively better accuracy), and study its local convergence behav-

ior. In the following Riemannian linearized proximal algorithm for solving (3.1), we always

assume that

0 < θ < 1, K > 0, α > 2 and 0 < v ≤ v < +∞.

Algorithm 1 Choose an initial point x0 ∈M and d−1 ∈ Tx0
M and set k := 0.

Step 1. Choose v ≤ vk ≤ v and 0 ≤ εk ≤ K‖dk−1‖α.

Step 2. If h(F (xk)) = inf
d∈TxkM

hxk,vk(d), then stop.

Step 3. If h(F (xk)) ≤ inf
d∈TxkM

hxk,vk(d) + εk, then we set εk := θεk and go back to Step 3.

Step 4. Calculate dk ∈ TxkM such that hxk,vk(dk) ≤ inf
d∈TxkM

hxk,vk(d) + εk.

Step 5. Set xk+1 := Rxkdk and update k := k + 1. Go back to Step 1.

To establish the local convergence of Algorithm 1, we need the following two important

notions: one is about weak sharp minima while the other is about quasi-regular point.

The concepts of weak sharp minima were introduced by Burke and Ferris [7], and have

been extensively studied and widely used to analyze the convergence properties of many

algorithms; see [6,17,26,27] and references therein. One natural extension of these concepts

is that of weak sharp minima of order p (p ≥ 1) (see [4,13,18,23] and references therein):

item (b) in the following definition was introduced by Studniarski and Ward [23]. The other

is about the quasi-regularity condition which provides a local bound on the set Γ (x). Recall

that C is given by (3.2).

Definition 2 Let S ⊆ Rm, η > 0 and p ≥ 1. C is said to be

(a) the set of weak sharp minima of order p for h on S with modulus η if

η dp(y, C) ≤ h(y)− hmin for each y ∈ S; (3.7)

(b) the set of local weak sharp minima of order p for h at ȳ ∈ C if there exist ε > 0 and

ηε > 0 such that C is the set of weak sharp minima of order p for h on B(ȳ, ε) with

modulus ηε.

Definition 3 Let x̄ ∈M . Then, x̄ is said to be

(a) a regular point for (3.4) if

ker(DF (x̄)∗) ∩ (C − F (x̄))	 = {0},

where DF (x̄)∗ is the conjugate operator of DF (x̄) and (C−F (x̄))	 is the negative polar

of C − F (x̄) and defined by (C − F (x̄))	 := {y : 〈y, c− F (x̄)〉 ≤ 0, for each c ∈ C}.
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(b) a quasi-regular point for (3.4) if there exist r > 0 and βr > 0 such that

d(0, Γ (x)) ≤ βr d(F (x), C) for each x ∈ B(x̄, r) (3.8)

(and so Γ (x) 6= ∅ for each x ∈ B(x̄, r)).

Remark 2 The notions of quasi-regular point and regular point were introduced and applied

to establish the local convergence rate of the GNM for problem (3.1) in linear space setting,

respectively, in Li and Ng [15], and Burke and Ferris [6], which have been extended to

Riemannian setting in [24]. Furthermore, any regular point of inclusion (3.4) is a quasi-

regular point (cf. [24, Proposition 4.1]).

The following lemma is about a useful property of the composition of a function, sat-

isfying the weak sharp minima of order p, and a continuously differentiable function on

M .

Lemma 3 Let S ⊆ Rm, η > 0 and p ≥ 1. Let C be the set of weak sharp minima of

order p for h on S with modulus η. Let L > 0, r > 0 and let x̄ ∈ M . Suppose that DF is

Lipschitz continuous on B(x̄, r) with modulus L. Then, for all x, y ∈ B(x̄, r) with y = Rxu

and (x, u) ∈ Â(x̄, r) such that F (x) + DF (x)u ∈ S, it holds that

d(F (y), C) ≤ 1

2
L‖u‖2 + η−

1
p (h(F (x) + DF (x)u)− hmin)

1
p . (3.9)

Proof By Lemma 1 and (3.7), it follows that

d(F (y), C) ≤ ‖F (y)− F (x)−DF (x)u‖+ d(F (x) + DF (x)u,C)

≤ 1
2L‖u‖

2 + η−
1
p (h(F (x) + DF (x)u)− hmin)

1
p .

The proof is complete.

Now we are ready to establish the following main theorem about local convergence of

sequences generated by Algorithm 3.1. Our analysis, without loss of generality, focuses only

on the special case when the stepsizes are chosen to be a constant, that is, vk ≡ v, unless

otherwise specified, as the corresponding convergence results for the general case can be

established similarly.

Theorem 1 Let x̄ ∈ M be such that x̄ is a quasi-regular point for (3.4) and F (x̄) ∈ C.

Suppose that C is the set of local weak sharp minima of order p for h at F (x̄) and DF is

local Lipschitz continuous at x̄. Then, for any δ > 0, there exist rδ ∈ (0, δ) and r1 > 0

such that any sequence {xk} generated by Algorithm 1 with initial point x0 ∈ B(x̄, rδ) and

‖d−1‖ ≤ r1, stays in B(x̄, δ) and converges to some point x∗ satisfying F (x∗) ∈ C at a rate

of q := min
{
α
2 ,

2
p

}
.
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Proof Note by assumption that there exist β, η, δ̄ and L ≥ 1 such that (2.3) holds with δ̄

in place of r,

d(0, Γ (x)) ≤ βd(F (x), C) for each x ∈ B(x̄, δ̄) (3.10)

and

ηdp(y, C) ≤ h(y)− hmin for each y ∈ B(F (x̄), δ̄). (3.11)

Recalling from (2.1), we assume that there exists µx̄ > 0 such that

d(y,Ryu) ≤ µx̄‖u‖ for each (y, u) ∈ A(x̄, δ̄) (3.12)

(choose smaller δ̄ if necessary). Furthermore, sine F is continuously differentiable on M ,

without loss of generality, we assume that

‖DF (x)‖ ≤ L for each x ∈ B(x̄, δ̄). (3.13)

Let δ > 0 be arbitrary. Without loss of generality, one may assume that

δ ≤ min

{
δ̄

2(µx̄ + 1)L
,

1

2

(
1

32vK

) 1
α−2

}
and β

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)
≤ 1

2
√

2
.

(3.14)

Set rδ := δmin{1, 1
2βL} and r1 :=

(
δ2

8vK

) 1
α

. We claim that rδ and r1 are as desired. To do

this, let x0 ∈ B(x̄, rδ), d−1 ∈ Tx0
M with ‖d−1‖ ≤ r1, and let {xk}, together with {dk}, be

a sequence generated by Algorithm 1 with initial point x0. Then,

d(F (x0), C) ≤ ‖F (x0)− F (x̄)‖ ≤ Ld(x0, x̄) ≤ δ

2β
. (3.15)

This, together with (3.10), implies that

d(0, Γ (x0)) ≤ δ

2
. (3.16)

Since d0 satisfies Step 4 of Algorithm 1, Lemma 2(i) is applicable to concluding that

‖d0‖ ≤
(
d2(0, Γ (x0)) + 2vK‖d−1‖α

) 1
2 ≤
√

2

2
δ (3.17)

(noting ‖d−1‖ ≤ r1 =
(

δ2

8vK

) 1
α

). We shall show by induction that the following estimates

hold for each i = 0, 1, 2, . . . :

d(xi, x̄) < (2µx̄ + 1)δ(< δ̄), d(F (xi), C) ≤ δ

β

(
1

2

)qi+i
and ‖di‖ ≤ 2δ

(
1

2

)qi+i
(< δ̄).

(3.18)

Note first that (3.18) holds for i = 0 (thanks to the choice of x0, (3.15) and (3.17)). Next,

assume that (3.18) holds for each i ≤ k − 1. Then it follows from (3.12) that

d(xk, x̄) ≤ µx̄
k−1∑
i=0

‖di‖+ d(x0, x̄) ≤ 2µx̄δ

k−1∑
i=0

(
1

2

)qi+i
+ δ < (2µx̄ + 1)δ. (3.19)
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Since xk−1 ∈ B(x̄, (2µx̄ + 1)δ), one has from (3.13) that

‖F (xk−1) + DF (xk−1)dk−1 − F (x̄)‖ ≤ ‖F (xk−1)− F (x̄)‖+ L‖dk−1‖ ≤ 2(µx̄ + 1)Lδ < δ̄

(due to (3.14)). Hence Lemma 3 and Lemma 2(ii) are applicable to conclude that

d(F (xk), C) ≤ L
2 ‖dk−1‖2 +

(
1
η

) 1
p

(h(F (xk−1) + DF (xk−1)dk−1)− hmin)
1
p

≤ L
2 ‖dk−1‖2 +

(
1

2ηv

) 1
p (

d2(0, Γ (xk−1)) + 2vK‖dk−2‖α
) 1
p .

(3.20)

We now claim that

d(F (xk), C) ≤ δ

β

(
1

2

)qk+k

. (3.21)

In fact, if k = 1, then, (3.20), together with (3.16), (3.17) and the choice of d−1, implies that

d(F (x1), C) ≤ L
2 ‖d0‖2 +

(
1

2ηv

) 1
p (

d2(0, Γ (x0)) + 2vK‖d−1‖α
) 1
p

≤ L
2

(√
2

2 δ
)2

+
(

1
2ηv

) 1
p
((

δ
2

)2
+ δ2

4

) 1
p

= 1
4Lδ

2 +
(

1
2ηv

) 1
p ( 1

2δ
2
) 1
p ,

and so (3.21) is established because

1

4
Lδ2+

(
1

2ηv

) 1
p
(

1

2
δ2

) 1
p

=
δ

4

(
1

2

) 1
p−1

((
1

2

)1− 1
p

Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)
≤ δ

8β
≤ δ

β

(
1

2

)q+1

,

where the first inequality is true by (3.14) and the facts that
(

1
2

) 1
p−1 ∈ [1,

√
2) (noting

p ∈ [1, 2)). Now we consider the case when k ≥ 2. Then, noting the following elementary

inequality:

(a+ b)r ≤ ar + br for any a ≥ 0, b ≥ 0 and r ∈ (0, 1], (3.22)

one has, from (3.20) and the induction assumption that (3.18) holds for each i ≤ k− 1, that

d(F (xk), C) ≤ L
2 ‖dk−1‖2 +

(
1

2ηv

) 1
p
(

d
2
p (0, Γ (xk−1)) + (2vK)

1
p ‖dk−2‖

α
p

)
≤ L

2 (2δ)2
(

1
2

)2(qk−1+k−1)

+
(

1
2ηv

) 1
p

(
δ

2
p
(

1
2

) 2
p (qk−1+k−1)

+ (2vK)
1
p (2δ)

α
p
(

1
2

)α
p (qk−2+k−2)

)
.

(3.23)

Noting by 2vK ≤ 1
16 (2δ)2−α(that is, δ ≤ 1

2

(
1

32vK

) 1
α−2 by (3.14)), we have that

(2vK)
1
p (2δ)

α
p ≤

(
1

16
(2δ)2−α

) 1
p

(2δ)
α
p =

(
1

2
δ

) 2
p

, (3.24)

and also note that

2(qk−1 + k − 1) ≥ qk + k,
2

p
(qk−1 + k − 1) ≥ qk + k − 1
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and
α

p
(qk−2 + k − 2) ≥ qk + k − 2

(as q = min{α2 ,
2
p}, α > 2, p ∈ [1, 2] and k ≥ 2). It follows from (3.23) that

d(F (xk), C) ≤ L
2 (2δ)2

(
1
2

)qk+k
+
(

1
2ηv

) 1
p

(
δ

2
p
(

1
2

)qk+k−1
+
(

1
2δ
) 2
p
(

1
2

)qk+k−2
)

= 2δ

(
Lδ +

(
1

2ηv

) 1
p
(
δ

2−p
p +

(
1
2

) 2
p−1

δ
2−p
p

))(
1
2

)qk+k

≤ 2δ

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)(
1
2

)qk+k

< δ
β

(
1
2

)qk+k
,

where the last inequality holds because, by (3.14), Lδ+ 2
(

1
2ηv

) 1
p

δ
2−p
p ≤ 1

2
√

2β
< 1

2β . Hence

(3.21) is established. Thus, by (3.10), we have that

d(0, Γ (xk)) ≤ βd(F (xk), C) < δ

(
1

2

)qk+k

. (3.25)

In view of step 5 of Algorithm 3.1, it follows from Lemma 2(i) that

‖dk‖ ≤
(
d2(0, Γ (xk)) + 2vK‖dk−1‖α

) 1
2 ≤ d(0, D(xk)) + (2vK)

1
2 ‖dk−1‖

α
2

(thanks to (3.22)). Then, by (3.25) and the induction assumption that (3.18) holds for

i = k − 1, it follows that

‖dk‖ ≤ δ
(

1

2

)qk+k

+ (2vK)
1
2 (2δ)

α
2

(
1

2

)α
2 (qk−1+k−1)

.

Since α
2 (qk−1 + k − 1) ≥ qk + k − 1 (as α

2 ≥ q ≥ 1) and since (2vK)
1
2 (2δ)

α
2 ≤ 1

2δ by (3.24)

(with 2 in place of p), it follows that

‖dk‖ ≤ δ
(

1

2

)qk+k

+
δ

2

(
1

2

)qk+k−1

= 2δ

(
1

2

)qk+k

. (3.26)

Hence, combining (3.19), (3.21) and (3.26), one checks that (3.18) holds for i = k and so for

each i = 0, 1, 2, · · · . Consequently, {xk} is a Cauchy sequence, and converges to a point x∗,

which, by (3.18), satisfies that F (x∗) ∈ C, and

d(xk, x
∗) ≤

+∞∑
i=k

‖di‖ ≤ 4δ

(
1

2

)qk+k

.

Therefore, {xk} converges to x∗ at a rate of q
(

= min
{
α
2 ,

2
p

})
, and the proof is complete.

In the case when each εk = 0, we obtain the following exact R-LPA:
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Algorithm 2 Choose an initial point x0 ∈M and set k := 0.

Step 1. Choose v ≤ vk ≤ v.

Step 2. If h(F (xk)) = inf
d∈TxkM

hxk,vk(d), then stop.

Step 3. Calculate dk ∈ TxkM such that hxk,vk(dk) = inf
d∈TxkM

hxk,vk(d).

Step 4. Set xk+1 := Rxkdk and update k := k + 1. Go back to Step 1.

Then, the following corollary follows directly from Theorem 1 which shows the local

convergence results of any sequence generated by Algorithm 2.

Corollary 1 Suppose that all assumptions of Theorem 1 hold. Then, for any δ > 0, there

exists rδ ∈ (0, δ) such that any sequence {xk} generated by Algorithm 2 with initial point

x0 ∈ B(x̄, rδ), stays in B(x̄, δ) and converges to some point x∗ satisfying F (x∗) ∈ C at a

rate of 2
p .

3.2 Globalized Riemannian Linearized Proximal Algorithm

By virtue of the backtracking line-search, this subsection is to propose a global version

of Algorithm 2 and establish its global convergence theorem. The globalized Riemannian

linearized proximal algorithm presented below is an extension of [14, Algorithm 17] to the

Riemannian manifold settings.

Algorithm 3 Choose an initial point x0 ∈M , 0 < c < 1, 0 < γ < 1 and set k := 0.

Step 1. Calculate dk by Steps 1-3 in Algorithm 2.

Step 2. Find tk which is the maximum value of γs for s = 0, 1, · · · , such that

h(F (Rxkγ
sdk))− h(F (xk)) ≤ cγs (hxk,vk(dk)− h(F (xk))) . (3.27)

Step 3. Set xk+1 := Rxktkdk and update k := k + 1. Go back to Step 1.

The following proposition shows that any cluster point of a sequence generated by Al-

gorithm 3 is a stationary point. Recall that F is continuously differentiable on M . For a

convex function g : Rn → R, the subdifferential of g at x ∈ Rn is defined by

∂g(x) := {ξ ∈ Rn : g(y) ≥ g(x) + 〈ξ, y − x〉, for each y ∈ Rn}.

Proposition 1 Let {xk} be a sequence generated by Algorithm 3 and assume that {xk} has

a cluster point x̄ such that DF is local Lipschitz continuous at x̄. Then, x̄ is a stationary

point: 0 ∈ DF (x̄)∗ ◦ ∂h(F (x̄)), and F (x̄) ∈ C if x̄ is a regular point of inclusion (3.4).

Proof By [14, Remark 16], it remains to show that 0 ∈ DF (x̄)∗ ◦ ∂h(F (x̄)). To proceed,

let {xki} be a subsequence of {xk} such that limi→∞ xki = x̄. Let {dki} be the associated

sequence generated by Algorithm 3. For each ki, there is uki ∈ Tx̄M such that xki =

expx̄ uki . Since uki → 0 and D expx̄ 0 = ITx̄M , without loss of generality, we assume that
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(D expx̄ uki)
−1 exists for each ki and {‖(D expx̄ uki)

−1‖} is bounded. For each ki, write

wki := (D expx̄ uki)
−1dki . Noting that for each i,

1

2v
‖dki‖2 ≤ hxki ,v(dki)− hmin ≤ h(F (xki))− hmin,

and h(F (·)) is continuous, one has that {dki} is bounded and so

{wki} is bounded. (3.28)

Set d̄ := arg min
d∈Tx̄M

hx̄,v(d). By the definition of hx,v(·) and the isometry Pxki ,x̄, we obtain

hxki ,v(dki)− hx̄,v(d̄) ≤ h(F (xki) + DF (xki)Pxki ,x̄d̄)− h(F (x̄) + DF (x̄)d̄). (3.29)

For each ki, write ∆ki := hxki ,v(dki) − h(F (xki)). Then, by the definition of dki , we have

that

h(F (xki) + DF (xki)dki)− h(F (xki)) ≤ ∆ki ≤ 0. (3.30)

We assert that

lim
i→+∞

∆ki = 0. (3.31)

Granting this, one has that

h(F (x̄)) = lim
i→+∞

h(F (xki)) = lim
i→+∞

hki,v(dki), (3.32)

and then letting i→∞ in (3.29), by (3.32) and the fact that h, F,DF, P·,x̄ are respectively

continuous at x̄, one can check that

h(F (x̄)) = lim
i→+∞

hki,v(dki) ≤ hx̄,v(d̄).

Combining this with the definitions of d̄ and hx̄,v yields that d̄ = 0. This, together with the

optimal condition applied to hx̄,v(·), gives that 0 ∈ DF (x̄)∗ ◦ ∂h(F (x̄)).

Now we apply [5, Theorem 2.4] to show that (3.31) holds. To do this, for each ki, write

Dki := {wki}. Define F̂x̄(·) := F ◦ expx̄(·). Fix ki. Then, it follows from the definition of uki
and (3.30) that

h(F̂x̄(uki) + DF̂x̄(uki)wki)− h(F̂x̄(uki)) = h(F (xki) + DF (xki)dki)− h(F (xki)) ≤ ∆ki ≤ 0

and so

[0 ∈ Dki ]⇐⇒ [wki = 0]⇐⇒ [dki = 0]⇐⇒ [∆ki = 0].

Note by the definition of dki and the optimal condition (applied to hxk,v(·)) that

[dki = 0]⇐⇒ [0 ∈ DF (xki)
∗ ◦ ∂h(F (xki))]⇐⇒ [0 ∈ DF̂x̄(uki)

∗ ◦ ∂h(F̂x̄(uki))]

(noting that DF̂x̄(uki) = DF (xki) ◦D expx̄ uki and D expx̄ uki is invertible). Thus, one has

[0 ∈ Dki ]⇐⇒ [∆ki = 0]⇐⇒ [0 ∈ DF̂x̄(uki)
∗ ◦ ∂h(F̂x̄(uki))].

Then, conditions (a)-(c) in [5, (2.2)] hold for uki , wki , F̂x̄ in place of xi, di, f and so {uki}
can be regarded as a sequence generated by algorithm [5, (2.1)]. Note further that {wki} is

bounded by (3.28). Therefore, [5, Theorem 2.4] is applicable to concluding that (3.31) holds.

The proof is complete.
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We now establish in the following theorem a global superlinear convergence result for

Algorithm 3 under the assumptions of local weak sharp minima of order p and the quasi-

regular condition.

Theorem 2 Let {xk} be a sequence generated by Algorithm 3 and assume that {xk} has a

cluster point x̄ such that x̄ is a quasi-regular point for (3.4), C is the set of local weak sharp

minima of order p for h at F (x̄) ∈ C and DF is local Lipschitz continuous at x̄. Then, {xk}
converges to x̄ at a rate of 2

p .

Proof Firstly, we show the following claim.

Claim. For any subsequence {xki} such that xxi → x̄, there exist i0 ∈ N and τ > 0 such

that

h(F (Rxkidki)))− hmin ≤ τd2(0, Γ (xki)) for each i ≥ i0. (3.33)

To do this, fix a subsequence {xki} such that xxi → x̄. Then, by the continuity of F , it

follows that

F (xki)→ F (x̄) and d(F (xki), C)→ 0. (3.34)

Noting by the assumptions, there exist β, η, δ̄ and L ≥ 1 such that (2.3) holds with δ̄ in

place of r,

η dp(z, C) ≤ h(z)− hmin for each z ∈ B(F (x̄), δ̄), (3.35)

d(0, Γ (x)) ≤ β d(F (x), C) for each x ∈ B(x̄, δ̄). (3.36)

Combining (3.34) and (3.36), we apply Lemma 2(i) to obtain that

d(0, Γ (xki))→ 0 and ‖dki‖ → 0. (3.37)

Thus, there exists an integer i0 such that, for all i ≥ i0, the following inequalities hold:

d(xki , x̄) <
δ̄

2
, ‖dki‖ <

δ̄

2
, (3.38)

and

‖F (Rxkidki)− F (x̄)‖ < δ̄, ‖F (xki) + DF (xki)dki − F (x̄)‖ < δ̄. (3.39)

Then, it follows from Lemmas 2(ii) that

h(F (Rxkidki))−hmin ≤ h(F (Rxkidki))−h (F (xki) + DF (xki)dki)+
1

2v
d2(0, Γ (xki)). (3.40)

Without loss of generality, we assume that h is Lipschitz continuous on B(F (x̄), δ̄) with

Lipschitz constant l (using a smaller δ̄ if necessary). Then, by (3.39) and (3.38), we conclude

from Lemma 1 and Lemma 2(i) that

h(F (Rxkidki))− h (F (xki) + DF (xki)dki) ≤ l‖F (Rxkidki))− F (xki)−DF (xki)dki‖

≤ Ll

2
d2(0, Γ (xki)),
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and so it follows from (3.40) that

h(F (Rxkidki)))− hmin ≤ τd2(0, Γ (xki)),

where τ := Ll
2 + 1

2v < +∞. Thus the claim is seen to hold.

Secondly, we show that there exists δ > 0 such that the following implication holds for

any k:

d(xk, x̄) < δ =⇒ tk = 1. (3.41)

Suppose on the contrary that, there exist a sequence {δi} ⊆ (0, 1) with δi ↓ 0 and a sub-

sequence {ki} ⊆ N such that xki ∈ B(x̄, δi) and tki 6= 1. Then, xki → x̄ and, for each

ki,

h(F (Rxkidki))− h(F (xki)) > c

(
h (F (xki) + DF (xki)dki) +

1

2v
‖dki‖2 − h(F (xki))

)
.

(3.42)

Note by the above claim that there exist i0 and τ > 0 such that (3.33) holds. This, together

with (3.42), implies that

hmin − h(F (xki)) + τd2(0, Γ (xki)) ≥ h(F (Rxkidki)))− h(F (xki))

> c
(
h(F (xki) + DF (xki)dki) + 1

2v‖dki‖
2 − h(F (xki))

)
≥ c

(
hmin + 1

2v‖dki‖
2 − h(F (xki))

)
.

Hence

(1− c) (hmin − h(F (xki))) + τd2(0, Γ (xki)) ≥
c

2v
‖dki‖2 > 0, (3.43)

(noting that dki 6= 0 by (3.42)). On the other hand, applying (3.35) and (3.36), we conclude

that

(1− c) (hmin − h(F (xki))) ≤ (c− 1)ηβ−pdp(0, Γ (xki)).

Hence it follows from (3.43) that

0 < (c− 1)ηβ−p + τd2−p(0, Γ (xki)).

Since d(0, Γ (xki)) → 0 (see (3.37)) and that p < 2, we arrive at (by taking the limit)

0 < (c− 1)ηβ−p, which is clearly a contradiction. Thus, we establish the implication (3.41)

for some δ > 0.

Finally, we show that {xk} converges to x̄ at a rate of 2
p . Let δ > 0 be such that

the implication (3.41) holds for any k. Then, by Corollary 1, there exists rδ ∈ (0, δ) such

that any sequence {x̃k} generated by Algorithm 2 with initial point x̃0 ∈ B(x̄, rδ) stays in

B(x̄, δ). Since x̄ is a cluster point of {xk}, there exists integer j0 such that d(xj0 , x̄) < rδ.

Let x̃0 := xj0 ∈ B(x̄, rδ), and let {x̃k} be generated by Algorithm 2 with x̃0 being the

initial point. Then we have that d(x̃k, x̄) < δ for any k = 0, 1, 2, · · · and {x̃k} is convergent.

Moreover, since d(xj0 , x̄) < rδ ≤ δ, it follows from (3.41) that tj0 = 1. This means that

x̃1 and xj0+1 are the same. Hence d(xj0+1, x̄) < δ, and we further have that tj0+1 = 1.

Inductively, we conclude that tk = 1 for all k ≥ j0. Thus {xk}k≥j0 coincides with {x̃k} and

so is convergent (to x̄) at a rate of 2
p (as so is {x̃k} as noted earlier). Therefore the proof is

complete.
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4 The NIEP

This section is devoted to applying the R-LPA type algorithms to solve the NIEP (1.1).

Recall that O(n) is an orthogonal Stiefel manifold (cf. [1]). Hence, O(n) × V is a product

manifold where V is given by (1.2). Let p ≥ 1. As mentioned in Section 1, solving the NIEP

(1.1) is equivalent to solving (3.1) with
M := O(n)× V,
F (U, V ) := U(Λ+ V )UT for each (U, V ) ∈ O(n)× V,
h(A) := 1

pdp(A,Rn×n+ ) for each A ∈ Rn×n;

(4.1)

or equivalently,

min
(U,V )∈O(n)×V

fp(U, V ) := h(F (U, V )). (4.2)

Note that F is analytic on O(n)×V (cf. [28]). Below, we recall a retraction R on O(n)×V
and the differential of F ; see [1,28] for more details. To proceed, let (U, V ) ∈ O(n)×V. The

tangent space at (U, V ) to O(n)× V is given by

T(U,V )(O(n)× V) = TUO(n)× TV V,

where TUO(n) and TV V are tangent spaces at U and V to O(n) and V, respectively, and

defined by

TUO(n) := {UΩ| ΩT = −Ω, Ω ∈ Rn×n} and TV V = V.

Let R : T (O(n) × V) → O(n) × V be the retraction such that for each (U, V ) ∈ O(n) × V,

the restriction of R to (U, V ), that is, R(U,V ) : T(U,V )(O(n)× V)→ O(n)× V, is given by

R(U,V )(ξU , ηV ) := (RUξU , RV ηV ) for each (ξU , ηV ) ∈ T(U,V )(O(n)× V), (4.3)

where RU , RV are retractions at O(n) and V, respectively, and defined by{
RU (ξU ) : = qf(U + ξU ) for each ξU ∈ TUO(n);

RV (ηV ) : = V + ηV for each ηV ∈ TV V.

Here qf(A) denotes the Q factor of the QR decomposition of a nonsingular matrix A ∈ Rn×n

in the form of A = QR̃ with Q ∈ O(n) and R̃ an upper triangular matrix having strictly

positive positive diagonal entries (see [1, p. 58-59] for more details). Now, we present the dif-

ferential of F . Following [28], the differential DF (U, V ) : T(U,V )(O(n)×V)→ TF (U,V )Rn×n '
Rn×n of F at (U, V ) ∈ O(n)× V is given by

DF (U, V )(ξU , ηV ) := UηV U
T−[U(Λ+V )UT , ξUU

T ] for each (ξU , ηV ) ∈ T(U,V )(O(n)×V),

(4.4)

where [A,B] = AB −BA is Lie Bracket of A and B.
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Associated to h defined in (4.1), the linearized proximal mapping h(U,V ),v for fixed

(U, V ) ∈ O(n)× V and v > 0 in (3.3) is reduced to

h(U,V ),v(d) :=
1

p
dp(F (U, V ) + DF (U, V )d,Rn×n+ ) +

1

2v
‖d‖2 for each d ∈ T(U,V )(O(n)×V).

(4.5)

For the remainder of this section, we assume that 1 < p < 2. Then, solving the subproblem

min
d∈T(U,V )(O(n)×V)

h(U,V ),v(d)

is equivalent to solving the following nonlinear equation due to first order optimality condi-

tion:

G(U,V ),v(d) := h′(U,V ),v(d)

= dp−2(F (U, V ) + DF (U, V )d,Rn×n+ )DF (U, V )∗ ◦ (I−ΠRn×n+
)(F (U, V ) + DF (U, V )d) + 2vd

= 0,

where I denotes the identity operator and ΠRn×n+
is the projection onto Rn×n+ . Inspired by

this, we propose the following algorithm for solving (4.2).

Algorithm 4 (R-LPA) Choose an initial point (U0, V0) ∈ O(n)× V and set k := 0.

Step 1. Choose v ≤ vk ≤ v.

Step 2. If G(Uk,Vk),vk(0) = 0, then stop.

Step 3. Calculate dk by solving G(Uk,Vk),vk(d) = 0.

Step 4. Set (Uk+1, Vk+1) := R(Uk,Vk)dk and update k := k + 1. Go back to Step 1.

The corresponding global version of Algorithm 4 is as follows.

Algorithm 5 (R-GLPA) Choose an initial point (U0, V0) ∈ O(n)×V, 0 < c < 1, 0 < γ < 1

and set k := 0.

Step 1. Calculate dk by Steps 1-3 in Algorithm 4.

Step 2. Find tk which is the maximum value of γs for s = 0, 1, · · · , such that

h(F (R(Uk,Vk)γ
sdk))− h(F (Uk, Vk)) ≤ cγs

(
h(Uk,Vk),vk(dk)− h(F (Uk, Vk))

)
.

Step 3. Set (Uk+1, Vk+1) := R(Uk,Vk)tkdk and update k := k + 1. Go back to Step 2.

Remark 3 Clearly, the sequence generated by Algorithm 4 (resp. Algorithm 5) for solving

(4.2) can also be regarded as a sequence generated by Algorithm 2 (resp. Algorithm 3) for

solving (3.1) with (4.1).

To proceed, associated to problem (4.2), we consider the inclusion

F (U, V ) ∈ Rn×n+ . (4.6)

For ensuring the regularity condition for inclusion (4.6), we will make use of the Robinson

constraint qualification considered in [21, Definition 2]. To do this, as usual, we use coneA

(resp. intA) to denote the conic hull (resp. interior) of a subset A, while the image of a linear

operator T : Rn → Rm is denoted by imT .
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Proposition 2 Let (Ū , V̄ ) ∈ O(n) × V be such that F (Ū , V̄ ) ∈ Rn×n+ . Suppose that the

Robinson constraint qualification for (4.6) holds at (Ū , V̄ ):

0 ∈ int{F (Ū , V̄ ) + im DF (Ū , V̄ ) + Rn×n− }. (4.7)

Then (Ū , V̄ ) is a regular point for (4.6).

Proof Since im DF (Ū , V̄ ) is a linear subspace of Rn×n, it follows from (4.7) that

0 ∈ int{im DF (Ū , V̄ ) + Rn×n+ − F (Ū , V̄ )},

and so

im DF (Ū , V̄ ) + cone(Rn×n+ − F (Ū , V̄ )) = Rn×n. (4.8)

Passing to the negative polar and using the basic properties on polars (cf. [16, Lemma

2.1(vii)]), we arrive at

ker(DF (Ū , V̄ )∗) ∩ (Rn×n+ − F (Ū , V̄ ))	 = {0}

(noting that ((im DF (Ū , V̄ ))	 = ker(DF (Ū , V̄ )∗), that is, (Ū , V̄ ) is a regular point for (4.6).

The proof is complete.

The main theorems are as follows, which provide the convergence properties of Algo-

rithms 4 and 5 for solving (4.2).

Theorem 3 Let (Ū , V̄ ) ∈ O(n)×V be such that F (Ū , V̄ ) ∈ Rn×n+ and (4.7) hold. Then, for

any δ > 0, there exists rδ ∈ (0, δ) such that any sequence {(Uk, Vk)} generated by Algorithm

4 with initial point (U0, V0) ∈ B((Ū , V̄ ), rδ), stays in B((Ū , V̄ ), δ) and converges to some

point (U∗, V ∗) satisfying F (U∗, V ∗) ∈ Rn×n+ at a rate of 2
p .

Proof Consider (3.1) with (4.1). Then hmin = 0, and C := arg miny∈Rn×n h(y) = Rn×n+ . By

Proposition 2, together with Remark 2, (Ū , V̄ ) is a quasi-regular point for (4.6): F (U, V ) ∈ C.

In terms of the definition of h, one sees that C is the set of local weak sharp minima of order

p for h at F (Ū , V̄ ) ∈ C. Finally, DF is local Lipschitz continuous at (Ū , V̄ ) (noting that

F is analytic as mentioned above). Thus, all assumptions of Theorem 1 are checked and

so Corollary 1 is applicable. Thus, thank to Remark 3, the conclusion is seen to hold by

Corollary 1. The proof is complete.

The proof for Theorem 4 below is similar (by applying Theorem 2 instead of Corollary

1) and so is omitted here.

Theorem 4 Let {(Uk, Vk)} be a sequence generated by Algorithm 5 and assume that {(Uk, Vk)}
has a cluster point (Ū , V̄ ) ∈ O(n)×V satisfying F (Ū , V̄ ) ∈ Rn×n+ and (4.7). Then, {(Uk, Vk)}
converges to (Ū , V̄ ) at a rate of 2

p .
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5 Numerical experiments

In this section, we present the numerical performance of the R-LPA and the R-GLPA for

solving the NIEP (1.1), or equivalently, the convex composite optimization problem (4.2).

To illustrate the efficiency of our algorithm, we compare the R-GLPA with the Riemannian

inexact Newton-CG algorithm (R-NCGA) [28], which is one of typical state-of-the-art al-

gorithms developed recently for solving the NIEP (1.1). All algorithms are implemented in

MATLAB R2020b and the hardware environment is Intel Core i7-10750H, @2.60 GHz (6

CPUs), 16.00 GB of RAM.

In the numerical experiments, the NIEP (1.1) is tested with various n. Let A? ∈ Rn×n+

be a random dense matrix with each entry generated from the uniform distribution on

the interval (0, 1) or a 1% sparse random matrix, and we choose the eigenvalues of A? as

prescribed spectrum Λ, which is derived from the block diagonal part of the upper triangular

matrix generated by Schur decomposition using the built-in function schur. Let W ∈ V be

such that

Wij =

{
0, if i ≥ j or Λij 6= 0,

1, otherwise.

The parameters of the R-GLPA and R-NCGA are set as follows:

– R-GLPA: p = 2, vk ≡ 100, K = 1, c = γ = 0.9, θ = 0.5;

– R-NCGA: σ̄max = 0.01, η̄max = 0.1, η̂max = 0.9, θ = 0.9, t = 10−4.

We use the exponential map as the retraction on manifolds for both algorithms. The starting

points (U0, V 0) (resp. (R0, U0, V 0)) for the R-GLPA (resp. R-NCGA) in Section 5.1 and 5.2

are generated randomly by the built-in function rand and schur:

R0 �R0 = rand(n, n), [U0, V ] = schur(R0 �R0,′ real′), V 0 = W � V.

The accuracy of each algorithm is evaluated by the residual (RES) of the associated convex

composite optimization problem:

RES :=
∥∥[U∗(Λ+ V∗)U

T
∗ ]−

∥∥
F
,

where X− denotes the componentwise negative part of a matrix X ∈ Rn×n, and U∗, V∗
form the Schur decomposition of the solution estimated by the algorithm. The semismooth

Newton (SN) method [20] is applied to solve the subproblems in the R-GLPA when p = 2.

We use the conjugate gradient (CG) method to solve the nonlinear equations associated to

the semismooth Newton method for solving the subproblem of the R-GLPA and also the

subproblem of the R-NCGA. The stopping criteria of the R-GLPA and R-NCGA are listed

as follows:

– Outer iteration: the number of iterations is greater than 100, or RES < 10−4.

– SN iteration (for R-GLPA): the number of iterations is greater than 50 or

G(Uk,Vk),vk(d) < max{θ‖dk−1‖3, 10−4} (sparse case : max{θ‖dk−1‖3, 10−3−(n/10)}).
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– CG iteration:

– R-GLPA: RES of CG iteration is smaller than 10−4 (sparse matrix cases: 10−3−(n/10))

or the number of iterations is greater than 1000;

– R-NCGA: (2.9) and (2.10) in [28] are satisfied or the number of iterations is greater

than n2.

5.1 Numerical Performance of the R-GLPA

In our numerical tests, we repeat our experiments over 50 different starting points. For the

dense matrix case of the NIEP (1.1), the results of averaged CPU time, averaged number of

outer iterations (IT for short) and the averaged RES, are listed in the following Table 1.

Table 1: Numerical results of the NIEP (dense matrix case)

Algorithm R-GLPA R-NCGA

n CPU time IT RES CPU time IT RES

10 0.0011 s 2.0 9.4608e-07 0.0049 s 5.0 1.8157e-06

50 0.0253 s 2.8 2.9268e-06 0.0387 s 6.0 8.3712e-05

100 0.2587 s 3.1 1.0647e-05 0.3444 s 6.2 5.6637e-05

200 2.1883 s 3.3 4.3251e-05 2.8080 s 7.0 4.1385e-06

400 20.708 s 3.3 1.3122e-05 40.478 s 7.3 5.4843e-05

600 96.263 s 3.5 9.2702e-06 157.79 s 7.6 2.8425e-06

800 167.35 s 3.6 1.4139e-05 381.32 s 7.8 1.3212e-05

1000 276.98 s 3.8 1.3872e-05 765.56 s 8.0 2.1365e-05
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Fig. 1: RES - the number of outer iterations
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We observe from Table 1 that both algorithms own a small averaged RES which means

they converge to a solution. The R-GLPA costs less time than the R-NCGA under each

scale of the problem determined by n from 10 to 1000, and the advantage is more obvious in

the large scale cases. However, from the convergence result in [28] we know that R-NCGA

converges quadratically while the R-GLPA converges only linearly when p = 2 from our

theoretical analysis in the previous section. The phenomenon can be illustrated by Figure

1 which shows the RES on every outer iterations for n = 100 and n = 1000, respectively.

The random initial points especially in the large scale case make the R-NCGA take several

iterations at the initial stage, and consequently even with a higher accuracy requirement

(RES < 10−8), the iteration complexity of the R-GLPA is better than that of the R-NCGA.

Hence, only when starting from a sufficiently precise local initial point, the quadratical

convergence rate of the R-NCGA may show its power.

In addition, Figure 2 explicitly shows the CPU time consumed by the R-GLPA and R-

NCGA when the dimension n varies. The cost of CPU time of the R-NCGA grows more

rapidly than that of the R-GLPA with the increasing dimension n, which implies that the R-

GLPA performs better for large scale problems due to the smaller dimension of the manifold

determined by the problem formulation.
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Fig. 2: CPUtime - the dimension n

Finally, the following Table 2 lists the numerical results (also averaged by 50 random

trials) of the R-GLPA and R-NCGA for the 1% sparse random matrices. It is observed

that the R-GLPA is much more efficient than the R-NCGA in the sparse matrix case. It is

due to the convergence theorem of the R-NCGA requiring the surjective assumption on the

differential of a smooth mapping (associated to the NIEP) at the cluster point generated

by the R-NCGA (see [28, Assumption 1]), which is likely to be satisfied in the dense matrix
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case but would fail in the sparse matrix case (see [28, Remark 3.9]); while the assumption

for our convergence theorem of the R-GLPA is less restrictive than that of the R-NCGA.

Table 2: Numerical results of the NIEP (sparse matrix case)

Algorithm R-GLPA R-NCGA

n CPU time IT RES CPU time IT RES

10 0.0033 s 9.0 9.9508e-05 0.1394 s 91.0 9.9289e-05

20 0.0246 s 12.2 9.1468e-05 1.0532 s 98.0 9.8319e-05

50 0.3079 s 16.0 6.7647e-05 N/A1

80 1.7453 s 20.5 9.8251e-05 N/A

100 3.8023 s 25.0 8.3122e-05 N/A

In a word, it is revealed from the above numerical results that the R-GLPA is an efficient

and robust algorithm for solving the NIEP (1.1), especially for the large scale problems.

5.2 Simulation of Verification for the Robinson Constraint Qualification

From Theorems 3 and 4 we know that the Robinson constraint qualification (4.7) is impor-

tant to derive the convergence result of the R-GLPA as well as the R-LPA. One sufficient

condition ensuring (4.7) at (Ū , V̄ ) ∈ O(n) × V is that F (Ū , V̄ ) ∈ Rn×n++ (i.e., the derived

matrix is elementwise strictly positive). We conduct in this subsection the simulation study

to verify (4.7) at a cluster point when numerically solving the NIEP (1.1) by the R-GLPA.

The following Table 3 shows the result of numbers of the final step (i.e., reaching stopping

criteria) satisfying F (Ufinal, Vfinal) ∈ Rn×n++ for 100 replicates in various dimension scenario,

where the given eigenvalues are derived from positive ground truth random matrices with

elements generated from the standard uniform distribution on the open interval (0, 1) (i.e.,

rand(n, n)).

Table 3: Frequency of satisfaction of the condition (4.7) for 100 replicates

Ground truth n = 2 n = 5 n = 10 n = 20 n = 50

rand(n, n) + 0.0 92 69 40 12 2

rand(n, n) + 0.1 91 83 65 37 5

rand(n, n) + 0.2 93 90 80 71 54

rand(n, n) + 0.5 89 92 97 98 99

rand(n, n) + 1.0 96 99 100 100 100

From the simulation results in Table 3 we observe that when the eigenvalues are generated

from sufficient positive matrices (e.g. rand(n, n) + 0.5 or rand(n, n) + 1.0), the condition

(4.7) holds with high probability at the final step.

1 N/A means that the algorithm cannot approach the solution within the tenfold CPU time of that cost

by the R-GLPA.
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5.3 Illustrative Examples

This subsection is devoted to several numerical examples of the NIEP (1.1) to illustrate

Theorems 1-4 for different cases: Example 1 provides the case when the assumptions of

Theorem 3 and Theorem 4 (and so Theorem 1 and Theorem 2) are satisfied; Example 2 does

the case when neither the assumptions of Theorem 3 nor that of Theorem 4 are satisfied;

while Example 3 does the case when the assumptions of Theorem 2 are not satisfied.

Example 1 Consider the NIEP (1.1) with n := 2, λ1 := 1 and λ2 := 2. Take Ū :=

(
1 0

0 1

)
,

V̄ :=

(
0 0

0 0

)
. Then F (Ū , V̄ ) =

(
1 0

0 2

)
. By (4.4), one deduce that

im DF (Ū , V̄ ) =

{(
0 a+ b

b 0

) ∣∣∣∣ a, b ∈ R
}
.

Thus,

F (Ū , V̄ ) + im DF (Ū , V̄ ) + R2×2
− =

{(
1 + c1 a+ b+ c2
b+ c3 2 + c4

) ∣∣∣∣ a, b ∈ R, c1, c2, c3, c4 ∈ R−
}
.

From this, one checks by definition that

(
0 0

0 0

)
∈ int{F (Ū , V̄ ) + im DF (Ū , V̄ ) + R2×2

− },

that is, the Robinson constraint qualification (4.7) is satisfied at (Ū , V̄ ). Then assumption

of Theorem 3 is satisfied and so we apply Theorem 3 to concluding that for any δ > 0, there

exists rδ ∈ (0, δ) such that any sequence {(Uk, Vk)} generated by the R-LPA with initial

point (U0, V0) ∈ B((Ū , V̄ ), rδ), stays in B((Ū , V̄ ), δ) and converges to some point (U∗, V ∗)

satisfying F (U∗, V ∗) ∈ Rn×n+ at a rate of 2
p . In fact, we conduct 100 numerical experiments

of the R-LPA with each initial point randomly generated by

U0 =

(
sin(π2 + θ) cos(π2 + θ)

− cos(π2 + θ) sin(π2 + θ)

)
and V0 =

(
0 t

0 0

)
,

where θ and t satisfy the standard uniform distribution on (−π2 ,
π
2 ) and (−1, 1), respectively.

The numerical results show that for each generated sequence {(Uk, Vk)}, the relative error√
‖(Uk − Uk−1‖2F + ‖Vk − Vk−1)‖2F is less than 10−6 within 10 steps.

Moreover, we also test the R-GLPA as showed in Table 4. From this table, one sees that

the generated sequence numerically converges to (Ū , V̄ ), at which the Robinson constraint

qualification (4.7) is satisfied.
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Table 4: The iterate of Example 1 by the R-GLPA

k Uk Vk F (Uk, Vk) RES

0

(
0.9830 -0.1835

0.1835 0.9830

) (
0 -0.0182

0 0

) (
1.0369 -0.1980

-0.1798 1.9630

)
2.6758e-01

1

(
0.9998 -0.0211

0.0211 0.9998

) (
0 0.0244

0 0

) (
1.0000 0.0033

-0.0211 2.0002

)
2.1113e-02

2

(
1.0000 -0.0035

0.0035 1.0000

) (
0 0.0244

0 0

) (
0.9999 0.0209

-0.0035 2.0001

)
3.5168e-03

3

(
1.0000 -0.0006

0.0006 1.0000

) (
0 0.0244

0 0

) (
1.0000 0.0238

-0.0006 2.0000

)
5.8613e-04

4

(
1.0000 -0.0001

0.0001 1.0000

) (
0 0.0244

0 0

) (
1.0000 0.0243

-0.0001 2.0000

)
9.7681e-05

5

(
1.0000 -0.0000

0.0001 1.0000

) (
0 0.0244

0 0

) (
1.0000 0.0243

-0.0001 2.0000

)
1.6283e-05

6

(
1.0000 -0.0000

0.0001 1.0000

) (
0 0.0244

0 0

) (
1.0000 0.0243

-0.0000 2.0000

)
2.7132e-06

7

(
1.0000 -0.0000

0.0001 1.0000

) (
0 0.0244

0 0

) (
1.0000 0.0243

-0.0000 2.0000

)
4.5226e-07

Example 2 Consider the NIEP (1.1) with n := 2, λ1 := 0 and λ2 := 2. Take Ū :=

(
1 0

0 1

)
,

V̄ :=

(
0 0

0 0

)
. Then F (Ū , V̄ ) =

(
0 0

0 2

)
. By (4.4), one deduce that

im DF (Ū , V̄ ) =

{(
0 a− 2b

−2b 0

) ∣∣∣∣ a, b ∈ R
}
.

Thus, similar to what we have done in Example 1, one checks that

(
0 0

0 0

)
/∈ int{F (Ū , V̄ ) + im DF (Ū , V̄ ) + R2×2

− },

that is, the Robinson constraint qualification (4.7) fails at (Ū , V̄ ). As in Example 1, we also

conduct 100 numerical experiments of the R-LPA with initial points generated randomly

as in Example 1. The numerical experiments own the same convergence performance: the

relative error
√
‖(Uk − Uk−1‖2F + ‖Vk − Vk−1)‖2F of each generated sequence {(Uk, Vk)}, is

less than 10−6 within 10 steps.

When the R-GLPA is tested for two initial points, the numerical results are given in

Table 5 which illustrates that in Case I the R-GLPA terminates at a solution in finite steps,

while in Case II, the R-GLPA numerically converges to (Ū , V̄ ) even at which the Robinson

constraint qualification (4.7) fails.
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Table 5: Typical cases for the iterate of Example 2 by the R-GLPA

Case I

k Uk Vk F (Uk, Vk) RES

0

(
0.7288 -0.6846

0.6846 0.7288

) (
0 -0.0904

0 0

) (
0.9825 -1.0459

-0.9555 1.0172

)
1.4169

1

(
0.9573 -0.2892

0.2892 0.9573

) (
0 0.0895

0 0

) (
0.1425 -0.4717

-0.5612 1.8576

)
7.3312e-01

2

(
0.9996 0.0272

-0.0272 0.9996

) (
0 0.0048

0 0

) (
0.0016 0.0592

0.0544 1.9984

)
0

Case II

0

(
0.8435 -0.5371

0.5371 0.8435

) (
0 -0.0509

0 0

) (
0.6000 -0.9423

-0.8914 1.3999

)
1.2972

1

(
0.9992 -0.0389

0.0389 0.9992

) (
0 -0.0487

0 0

) (
0.0049 -0.1264

-0.0777 1.9949

)
1.4842e-01

2

(
0.9997 -0.0234

0.0234 0.9997

) (
0 -0.0427

0 0

) (
0.0021 -0.0895

-0.0468 1.9978

)
1.0102e-01

3

(
1.0000 0.0028

-0.0028 1.0000

) (
0 -0.0060

0 0

) (
−0.0000 -0.0004

-0.0056 2.0000

)
3.3302e-04

4

(
1.0000 0.0029

-0.0029 1.0000

) (
0 -0.0059

0 0

) (
-0.0000 -0.0001

0.0058 2.0000

)
1.1069e-06

Example 3 Consider the NIEP (1.1) with n := 3, λ1 := 1+
√
−1, λ2 := 1−

√
−1 and λ3 := 0.

From the numerical results of the R-GLPA for 100 random trials (one of which is listed in

Table 6), we observe that each generated sequence does not converge to a point (U, V ) such

that F (U, V ) is a solution of the NIEP (1.1). This means that the assumptions of Theorem

2 are not satisfied.

6 Conclusions

The present paper studied the issue of numerically solving the NIEP. At first, we refor-

mulated the NIEP as a convex composite optimization problem on Riemannian manifolds.

Then we developed a scheme of the R-LPA to solve the NIEP. Under some mild conditions,

we presented the local and global convergence results of the R-LPA, respectively. Moreover,

numerical experiments were provided. Compared with the Riemannian Newton-CG method

in [28], this R-LPA owns better numerical performances for large scale problems and sparse

matrix cases.
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Table 6: The iterate of Example 3

k Uk Vk F (Uk, Vk) RES

0

0.9214 0.2643 -0.2849

0.1568 -0.9236 -0.3497

0.3555 -0.2775 0.8925

 0 0 -0.2626

0 0 -0.1607

0 0 0

 0.9999 -0.8926 -0.3493

0.7623 0.8401 0.6926

0.6178 0.0443 0.1599

 9.5862e-01

1

0.7268 0.3450 -0.5939

0.0918 -0.9057 -0.4138

0.6806 -0.2462 0.6900

 0 0 -0.6552

0 0 0.2624

0 0 0

 0.8763 -0.7761 -0.2701

0.6211 0.9520 0.6738

1.1267 -0.0971 0.1716

 8.2751e-01

2

 0.2786 0.4193 -0.8619

-0.1916 -0.8571 -0.4779

0.9391 -0.2987 0.1583

 0 0 -1.2147

0 0 0.4612

0 0 0

  0.3784 -0.5019 -0.3636

-0.1142 0.8490 0.9125

1.7153 -0.1751 0.7687

 6.5401e-01

· · · · · · · · · · · · · · ·

30

 0.1285 0.0881 -0.9076

-0.4085 -0.8929 -0.1766

0.8198 -0.3766 0.0845

 0 0 -4.8435

0 0 2.2723

0 0 0

  0.4075 -0.1353 -0.0841

-0.0067 0.9730 0.8830

4.5733 -0.0321 0.4061

 1.6282e-01

31

 0.1388 0.0800 -0.9068

-0.4133 -0.8912 -0.1740

0.8160 -0.3819 0.0961

 0 0 -4.8978

0 0 2.3102

0 0 0

  0.4745 -0.1332 -0.0831

-0.0067 0.9711 0.8848

4.6252 -0.0330 0.3428

 1.6062e-01

· · · · · · · · · · · · · · ·

60

 0.1072 0.0657 -0.9122

-0.4515 -0.8772 -0.1481

0.8047 -0.4105 0.0700

 0 0 -5.7798

0 0 3.0221

0 0 0

  0.3999 -0.1080 -0.0671

-0.0039 0.9795 0.8851

5.5305 -0.0219 0.4036

 1.2912e-01

61

 0.1140 0.0608 -0.9118

-0.4538 -0.8762 -0.1471

0.8026 -0.4133 0.0778

 0 0 -5.8090

0 0 3.0455

0 0 0

  0.4517 -0.1071 -0.0667

-0.0032 0.9784 0.8862

5.5611 -0.0219 0.3543

 1.2812e-01

· · · · · · · · · · · · · · ·

99

 0.0997 0.0495 -0.9141

-0.4814 -0.8639 -0.1311

0.7916 -0.4356 0.0677

 0 0 -6.4852

0 0 3.6470

0 0 0

  0.4384 -0.0920 -0.0568

-0.0023 0.9818 0.8869

6.2848 -0.0170 0.3613

 1.0942e-01

100

 0.0975 0.0508 -0.9143

-0.4813 -0.8640 -0.1311

0.7920 -0.4353 0.0652

 0 0 -6.4892

0 0 3.6511

0 0 0

  0.4210 -0.0920 -0.0567

-0.0024 0.9822 0.8867

6.2899 -0.0167 0.3780

 1.0933e-01

Data availability The datasets generated during and/or analyzed during the current study
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