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Abstract—Nonconvex-concave (NC-C) finite-sum minimax
problems have broad applications in decentralized optimization
and various machine learning tasks. However, the nonsmooth
nature of NC-C problems makes it challenging to design ef-
fective variance reduction techniques. Existing vanilla stochastic
algorithms using uniform samples for gradient estimation often
exhibit slow convergence rates and require bounded variance
assumptions. In this paper, we develop a novel probabilistic
variance reduction updating scheme and propose a single-loop
algorithm called the probabilistic variance-reduced smoothed
gradient descent-ascent (PVR-SGDA) algorithm. The proposed
algorithm achieves an iteration complexity of O(ϵ−4), surpassing
the best-known rates of stochastic algorithms for NC-C minimax
problems and matching the performance of the best deterministic
algorithms in this context. Finally, we demonstrate the effective-
ness of the proposed algorithm through numerical simulations.

Index Terms—nonconvex-concave minimax optimization, vari-
ance reduction, single-loop, stochastic algorithm.

I. INTRODUCTION

In recent years, various applications in decentralized opti-
mization [1], (distributionally) robust optimization [2]–[4], and
reinforcement learning [5]–[7] have underscored the need to
tackle nonconvex-concave (NC-C) smooth minimax problems.
While the ultimate objective is to train models that perform
well to unseen data, in practice, we deal with a finite dataset
during training. This leads to the finite-sum minimax problem
addressed in this paper:

min
x∈X

max
y∈Y

f(x, y) :=
1

n

n∑
i=1

fi(x, y), (1)

where f : Rn × Rd → R can be nonconvex with respect
to x but concave with respect to y, fi refers to the cost
function associated with the i-th sample of a finite training
dataset, and X ⊆ Rn, Y ⊆ Rd are nonempty convex compact
sets. In large-scale network systems such as smart grids, UAV
swarms, and intelligent transportation systems, decentralized
nonconvex optimization problems commonly encountered over
multi-agent networks can be reformulated as NC-C minimax
problems using Lagrangian duality theory [1]. Consequently,
developing efficient algorithms for NC-C minimax problems
is essential to address the optimization challenges inherent in
decentralized scenarios.

This work is supported in part by the Hong Kong Research Grants Council
(RGC) General Research Fund (GRF) project CUHK 14204823.

Stochastic first-order algorithms have attracted significant
research interest for solving minimax problems due to their
scalability and efficiency. Among these, the stochastic gradient
descent-ascent (StocGDA) algorithm is the most widely used,
extending the stochastic gradient descent approach to the
minimax setting. For NC-C cases, the work [8] introduced
a stochastic variant of the two-timescale GDA algorithm
[9], which employs unequal step sizes and provides a non-
asymptotic convergence guarantee. On another front, multi-
loop type algorithms with acceleration in the subproblems [10]
have advantages over GDA variants in terms of iteration com-
plexity for general NC-C problems. Both of these algorithms
emphasize the importance of updating y more frequently than
x for solving minimax problems, while the two-timescale
StocGDA is relatively easier to implement and generally
demonstrates superior empirical performance compared to the
multi-step algorithms.

To further capitalize on the performance advantages of two-
timescale StocGDA, the work [11] explored the favorable
convergence properties of the alternating version of the two-
timescale GDA by proposing a stochastic alternating proximal
gradient algorithm. Additionally, the work [12] introduced
a stochastic algorithm based on the inexact proximal point
method with unequal step sizes to address NC-C minimax
problems. Both stochastic algorithms presented in [11], [12]
require an iteration complexity of O(ϵ−6) to solve NC-C
minimax problems.

While these stochastic approaches have established non-
asymptotic convergence guarantees for NC-C minimax prob-
lems, they generally exhibit significantly slower convergence
rates compared to deterministic methods and require the
additional assumption of bounded gradient variance. One
effective technique to enhance the convergence performance
of stochastic optimization algorithms is variance reduction.
For nonconvex minimization problems, extensive research has
demonstrated the effectiveness of variance reduction tech-
niques in improving computational complexity and achieving
faster convergence rates, with notable examples including the
stochastic path integrated differential estimator (SPIDER) [13]
and the stochastic recursive momentum (STORM) algorithm
[14]. In the realm of minimax optimization, the works [12],
[15] introduced double-loop variance-reduced stochastic algo-
rithms based on the SPIDER technique for nonconvex-strongly



concave (NC-SC) minimax optimization, which necessitate
large batch sizes during each periodic iteration. To the best
of our knowledge, there are currently no efficient variance-
reduced stochastic algorithms with low iteration complexity
available for addressing the NC-C minimax problems to en-
hance the convergence performance of StocGDA algorithms.

Compared to NC-SC minimax problems, NC-C minimax
problems are more challenging to solve due to the nonsmooth-
ness introduced by the nonunique dual solutions caused by
the lack of strong concavity. Hence, it is not a trivial task
to combine variance reduction technique into the algorithm
design. Classic variance reduction methods, such as SVRG
and SAGA, are not applicable to nonsmooth loss functions
[16]. Additionally, existing variance reduction techniques like
SPIDER and STORM suffer from unavoidable variance in the
stochastic gradient estimators, which impedes the assurance of
recursive gradient descent for NC-C minimax problems.

To address the challenge of nonsmoothness in gradient
estimation, it is crucial to carefully select and analyze an
appropriate variance reduction technique. A probabilistic vari-
ance reduction method is proposed, based on the structure of
the NC-C minimax problem. To be specific, we develop a
novel probability-based gradient updating scheme that elim-
inates variance terms in the stochastic gradient estimators
and ensures the recursive gradient descent property. Building
on this approach, we develop a novel probabilistic variance-
reduced smoothed gradient descent-ascent (PVR-SGDA) algo-
rithm for solving NC-C minimax problems. By integrating the
probabilistic variance reduction technique with Moreau-Yosida
smoothing acceleration, our proposed stochastic algorithm
achieves the iteration complexity of O(ϵ−4), where ϵ denotes
the desired optimization accuracy. This result matches the
best-known iteration complexity of deterministic counterparts
and represents a significant improvement over the O(ϵ−6)
complexity of stochastic algorithms in [12] for NC-C minimax
problems. In contrast to existing stochastic algorithms that rely
on bounded gradient variance [8], [11], as well as multi-loop
variance-reduced stochastic algorithms [10], [15], the proposed
algorithm adopts a single-loop structure, which simplifies
implementation and remains robust to gradient variance.

The notation we use in this paper is standard. We use [n]
to denote the set {1, 2, . . . , n} for any positive integer n. We
use Id to denote a d × d identity matrix and ⊗ to denote
the Kronecker product. Let the Euclidean space of all real
vectors be equipped with the inner product ⟨x, y⟩ := x⊤y for
any vectors x, y and ∥ · ∥ denote the induced norm. For a
differentiable function f , the gradient of f is denoted as ∇f .

II. MOTIVATING APPLICATION — CONSENSUS IN
DECENTRALIZED LEARNING

The popular optimal consensus problem and resource allo-
cation problem in networked systems can be formulated as
NC-C minimax problems [1]. Consider a connected network
graph G of N agents, where each agent i ∈ [N ] only
has access to a local nonconvex objective function fi and
can communicate with its neighbors. The optimal consensus

problem over multi-agent networks with set constraints is
described by

min
x∈Ω

N∑
i=1

fi(xi), s.t. (L ⊗ In)x = 0, (2)

where L ∈ RN×N is the Laplacian matrix of graph G, xi ∈
Ωi ⊆ Rn with Ω =

∏N
i=1 Ωi being the Cartesian product of

the local convex compact constraint sets Ωi for i ∈ [N ], and
x = col (xi)

N
i=1 ∈ RnN . Each agent i owns a local variable

estimate xi. Since the graph G is connected, (L ⊗ In)x = 0
implies that the consensus condition xi = xj holds for all
i, j ∈ [N ].

The augmented Lagrangian function of the consensus prob-
lem (2) is L (x, v) :=

∑N
i=1 fi(xi) + vT (L ⊗ In)x +

1
2x

T (L ⊗ In)x, where v := col (vi)
N
i=1 ∈ RnN is the dual

variable. Since L is an NC-C function, problem (2) can
be transformed into the target constrained minimax problem
minx∈Ω maxv∈V L (x, v), where the convex compact set V ⊆
RnN is chosen to be sufficiently large.

III. PROBABILISTIC VARIANCE-REDUCED SMOOTHED
GRADIENT DESCENT-ASCENT

For solving the general smooth NC-C problem (1), a
straightforward approach is to use the two-timescale GDA
algorithm, and the work [17] further utilizes the Moreau-
Yosida smoothing technique to accelerate the algorithms. To
be specific, the smoothing technique introduces an auxiliary
variable z and defines a regularized function

K(x, z; y) := f(x, y) +
r

2
∥x− z∥2. (3)

The additional quadratic term smooths the primal update and
facilitates a better trade-off between the primal and dual
updates when running GDA on this regularized function.

Utilizing the regularized function (3), we propose a stochas-
tic gradient descent-ascent algorithm with a probabilistic vari-
ance reduction technique in the following Algorithm 1. Here,
the stochastic gradients of the function K are given by

∇xK̃(x, z; y) := Gx(x, y, ξ1) + r(x− z),

∇yK̃(x, z; y) := Gy(x, y, ξ2),
(4)

where Gx(x, y, ξ1) and Gy(x, y, ξ2) are stochastic estimators
of ∇xf(x, y) and ∇yf(x, y) using random samples ξ1 and ξ2,
respectively. For simplicity, we denote ∇Kt := ∇K(xt, zt; yt)
and ∇K̃t := ∇K̃(xt, zt; yt) for t ∈ N.

Next, we state some basic assumptions in this paper.

Assumption III.1. The vectors Gx(x, y, ξ1) and Gy(x, y, ξ2)
are unbiased stochastic estimators of ∇xf(x, y) and
∇yf(x, y), respectively, i.e. E[∇K̃(x, z; y)] = ∇K(x, z; y).

Assumption III.2. The function f is differentiable and there
exists a positive constant L > 0 such that for all x1, x2 ∈ X
and y1, y2 ∈ Y ,

∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L[∥x1 − x2∥+ ∥y1 − y2∥],
∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L[∥x1 − x2∥+ ∥y1 − y2∥].



Algorithm 1 Probabilistic Variance-Reduced Smoothed Gra-
dient Descent-Ascent (PVR-SGDA)

1: Initialize: (x0, y0, z0), step sizes ηx > 0, ηy > 0, ρ > 0,
number of epochs T .

2: for t = 0, . . . , T − 1 do

3: vt =

{
∇xKt with prob. p
vt−1 +∇xK̃t −∇xK̃t−1 with prob. 1− p

4: wt =

{
∇yKt with prob. p
wt−1 +∇yK̃t −∇yK̃t−1 with prob. 1− p

5: xt+1 = PX (xt − ηxvt)
6: yt+1 = PY(yt + ηywt)
7: zt+1 = zt + ρ(xt+1 − zt)
8: end for

Remark III.1. Assumption III.1 naturally holds when the
samples ξ1 and ξ2 are chosen independently from an identical
distribution. Assumption III.2 is standard in minimax optimiza-
tion. These two assumptions are commonly adopted in existing
theoretical studies [11], [12], [15].

With the above assumptions, we assume r > L in the rest
of this paper, and then the regularized function K owns the
following important property.

Lemma III.1. The function K(·, z; y) is strongly convex with
modular r−L and ∇xK(·, z; y) is Lipschitz continuous with
constant L+ r.

IV. CONVERGENCE ANALYSIS

This section concentrates on the convergence analysis of
the proposed algorithm1. To introduce the main result, we first
define the stationarity measure that we are interested in.

Definition IV.1. Let ϵ ≥ 0 be given. The point (x, y) ∈ X ×Y
is said to be an ϵ-game-stationary point (ϵ-GS) if

dist(0,∇xf(x, y) + ∂1X (x)) ≤ ϵ,

dist(0,−∇yf(x, y) + ∂1Y(y)) ≤ ϵ.

The notion of game stationarity is a natural extension of
that of first-order stationarity in a minimization problem. In
addition, we define the following functions:

• (Dual function) d(y, z) := min
x∈X

K(x, z; y);

• (Proximal function) P (z) := max
y∈Y

min
x∈X

K(x, z; y);

• (Primal solution) x(y, z) := argminx∈X K(x, z; y);
• (Dual PGD step) y+(z) := PY(y+ηy∇yK(x(y, z), z; y).

Inspired by the works [18], [19], we propose a novel potential
function as follows:

Φt := Vt +
γ

2p
(∥∇xKt − vt∥2 + ∥∇yKt − wt∥2), (5)

1The full paper including detailed theoretical analysis is present at https:
//anonymous.4open.science/r/ICASSP 2025 NC C-F070.

where Vt := Kt − 2d(yt, zt) + 2P (zt) and γ is constant
parameter to be determined. The first term Vt in (5) can be
rewritten as

Vt = Kt − d(yt, zt)︸ ︷︷ ︸
Primal Descent

+P (zt)− d(yt, zt)︸ ︷︷ ︸
Dual Ascent

+ P (zt)︸ ︷︷ ︸
Proximal Descent

.

The potential function closely links the proximal function P
to the updates in the proposed algorithm on K, bridged by
an ascent step on the dual function d. The second term in (5)
accounts for the error in the gradient estimate.

The following proposition quantifies the change of Φt after
one round of updates.

Proposition IV.1. Suppose Assumptions III.1 and III.2 hold.
Without loss of generality, we set L ≥ 1. Let 2L ≤ r ≤ 4L,
γ ≥ 4 + 2

L , and p ∈ (0, 1]. The step-sizes satisfy

ηx ≤ p

p (1 + 24L+ 2L2) + 80γL2
,

ηy ≤ min

{
p

2p (1 + 9L) + 10γL2
,

1

2L(1 + ω)2

}
,

ρ ≤ 4p

1200p+ 9rγ
.

then for any t ≥ 0,

E[Φt − Φt+1]

≥ cxE[∥xt+1 − xt∥2] + cyE[∥yt − yt+(zt)∥2]
+ czE[∥zt − zt+1∥2]− 24rρκE[∥yt − yt+(zt)∥]
+ cvE[∥∇xKt − vt∥2] + cwE[∥∇yKt − wt∥2],

where cx = 1
2ηx

, cy = 1
4ηy

, cz = r
6ρ , cv = cw = γ

4 .

Using Proposition IV.1, we establish the main theorem
concerning the iteration complexity of Algorithm 1 for solving
(1) based on the following connection between various iterate
gaps and the GS measure in the following lemma.

Lemma IV.1. Let ϵ ≥ 0 be given. Suppose that

max

{
∥xt − xt+1∥

ηx
,
∥yt − yt+(zt)∥

ηy
,
∥zt+1 − zt∥

ρ
,

∥∇xKt − vt∥, ∥∇yKt − wt∥
}

≤ ϵ.

Then, there exists a β > 0 such that (xt+1, yt+1) is a βϵ-GS.

Theorem IV.1. Under the setting of Proposition IV.1 and ρ =
O(T− 1

2 ), for any T > 0, there exists a t ∈ {1, . . . , T} such
that (xt+1, yt+1) is an O(T− 1

4 )-GS in expectation, i.e.,

E[dist(0,∇xf(xt+1, yt+1) + ∂1X (xt+1))] ≤ ϵ,

E[dist(0,−∇yf(xt+1, yt+1) + ∂1Y(yt+1))] ≤ ϵ,
(6)

where ϵ = O(T− 1
4 ).

Based on the convergence result in Theorem IV.1, we find
that the proposed algorithm requires an iteration complexity
of O(ϵ−4) to achieve an ϵ-GS. Compared to the deterministic
algorithms in [17]–[19], the proposed stochastic algorithm
achieves the same iteration complexity while using sampled
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Fig. 1. (a) Convergence of PVR-SGDA algorithm with different p. (b) Performance for different algorithms.

gradients, thereby reducing gradient complexity. Furthermore,
the upper bounds on the step sizes in Proposition IV.1 indicate
that as the probability p increases, the ranges for the step sizes
ηx, ηy , and ρ expand, potentially leading to faster convergence.
On the other hand, as p increases, the number of gradient
calls in PVR-SGDA also rises for each update step. Therefore,
a trade-off exists between the choice of p and the overall
convergence efficiency.

V. NUMERICAL RESULTS

In this section, we apply the proposed algorithm to robust
logistic regression to demonstrate its practical efficacy. For
a dataset {(ai, bi)}ni=1, where ai ∈ Rd is the feature and
bi ∈ {−1, 1} is the label, the nonconvex-regularized problem
is formulated as follows:

min
x∈Rd

max
y∈∆n

f(x, y) =

n∑
i=1

yi log
(
1 + exp

(
−bia

⊤
i x

))
+ g(x),

where yi is the i-th component of variable y and ∆n denotes
the simplex in Rn. The nonconvex regularization g has the
form g(x) := λ

∑d
i=1 αx

2
i /(1 + αx2

i ). Following the settings
in [15], [20], we set λ = 0.001 and α = 10 in our experiment.
We conduct the experiment on the public dataset a9a, where
d = 123 and n = 32561. To measure the convergence
performance of algorithms, we evaluate the function value
Φ̃(x) = maxy∈∆n

f(x, y) with respect to the number of
gradient oracles.

Figure 1(a) illustrates the convergence trajectories of the
PVR-SGDA algorithm for different values of the probability
p. It can be observed that p significantly impacts the con-
vergence behavior of the proposed PVR-SGDA algorithm.
As p increases, the convergence rate initially accelerates but
then decreases as p approaches 1. When p = 1, where the
proposed algorithm reduces to the deterministic smoothed
GDA algorithm as described in [17], the convergence slows
down due to the increased gradient computation burden at each
iteration. Thus, the trade-off on the probability can also be
observed from the numerical experiments.

In addition, we compare the proposed PVR-SGDA algo-
rithm with several existing algorithms, including the popular
StocGDA algorithm [8] and the SVRG-based variance-reduced
AGDA (VR-AGDA) algorithm [21]. It is important to note
that VR-AGDA is designed for minimax problems that satisfy
the one-sided Polyak-Łojasiewicz inequality, and its theoret-
ical analysis does not directly apply to the NC-C minimax
problems considered here. Therefore, we only compare the
numerical performance of VR-AGDA in this context. The
convergence trajectories with respect to the number of gradient
oracle calls are presented in Figure 1(b). The fluctuations at the
tail of the PVR-SGDA convergence curve are influenced by
the choice of probability p, which can be seen from Fig. 1(a).
From these trajectories, we observe that the proposed PVR-
SGDA algorithm converges faster than the other baseline al-
gorithms, thereby validating the effectiveness of our approach.

VI. CONCLUSION

This paper presents a single-loop variance-reduced algo-
rithm for solving NC-C minimax problems. By incorporating
a probability-based variance reduction step, the proposed algo-
rithm reduces the need for full gradient calculations, which is
typical in deterministic algorithms, and achieves convergence
that is robust to gradient variance. Utilizing the Moreau-Yosida
smoothing technique, the algorithm achieves the best-known
complexity of O(ϵ−4) among stochastic algorithms that solve
NC-C minimax problems.
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