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Convex Composite Optimization

Convex composite optimization problem

min
x∈Rn

f(x) := h(F(x)),

the outer function h : Rm → R is convex,
the inner function F : Rn → Rm is continuously differentiable,
C := argminy∈Rm h(y) and X∗ := argminx∈Rn h(F(x)).

It provides a unified framework for
convex inclusions,
nonsmooth and nonconvex optimization,
penalty methods for nonlinear programming,
regularized minimization problems.
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Convex Composite Optimization

Algorithm (Gauss-Newton method)
Initializing: ρ ≥ 1, ∆ ∈ (0,+∞] and x0 ∈ Rn.
Iteration of xk → xk+1:

If h(F(xk)) = min{h(F(xk) + F′(xk)d) : ∥d∥ ≤ ∆}, then stop;
otherwise, we denote D∆(xk) := argmin∥d∥≤∆{h(F(xk) + F′(xk)d)},
choose dk ∈ D∆(xk) to satisfy ∥dk∥ ≤ ρdist(0,D∆(xk)), and set
xk+1 = xk + dk.
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Convex Composite Optimization

Convergence study of GNM:
[R. S. Womersley, Math. Program. 1985]: quadratically converges to
a local minima under the assumption of strong uniqueness.
[J. V. Burke and M. C. Ferris, Math. Program. 1995]: quadratically
converges to a global minima under the assumptions of weak sharp
minima and regularity condition.
[C. Li and X. Wang, Math. Program. 2002]: quadratically converges
to a global minima under the assumption of regularity condition.
[C. Li and K. F. Ng, SIAM J. Optim. 2007]: semilocal
linear/quadratic convergence with quasi-regular initial points.
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Linearized Proximal Algorithm LPA

From the practical view, the GNM is inconvenient to implement,
because the search direction dk, which is the vector in D∆(xk) with
minimal norm, is difficult to be found for many applications,
especially for the large scale problems.
Based on the idea of the proximal point algorithm due to [R. T.
Rockafellar, SIAM J. Control Optim. 1976], [A. S. Lewis and S. J.
Wright, arXiv:math.OC/0812.0423v1 2008] proposed an linearized
proximal algorithm called ProxDescent to solve CCO and investigated
the properties of local solutions of the subproblem.
[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016] proposed the
following general stepsizes of linearized proximal algorithm (LPA) for
solving CCO.
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Linearized Proximal Algorithm LPA

Algorithm (LPA)
Initializing: an initial point x0 ∈ Rn and a stepsize v0 > 0.
Iteration of xk → xk+1: (by setting vk)

If h(F(xk)) = mind∈Rn
{

h(F(xk) + F′(xk)d) + vk∥d∥2}, then stop;
otherwise, set

dk = argmind∈Rn
{

h(F(xk) + F′(xk)d) + vk∥d∥2} ,
xk+1 = xk + dk.
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Linearized Proximal Algorithm LPA

[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016] studied convergence
results for the stepsize satisfying:

vk = 1
2v

where v > 0 is a constant for each k > 0, or more general, the stepsize
{vk} satisfying:

0 < v ≤ vk ≤ v̄ < +∞

for each k > 0. We call this algorithm CLPA.
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Linearized Proximal Algorithm LPA

The notion of the weak sharp minimizer (of order 1) is proposed by [J. V.
Burke and M. C. Ferris, SIAM J. Control Optim. 1993]. [M. Studniarski
and D. E. Ward, SIAM J. Control Optim. 1999] extended the concept to
the weak sharp minimizer of p(p ≥ 1) for a function g : Rn → R as follows:

Definition (Local weak sharp minimizer of order p)
Let x̄ ∈ Rn. x̄ is a local weak sharp minimizer of order p for g if
x̄ ∈ argmin g and there exist r > 0 and ηr > 0 such that

g(x)− g(x̄) ≥ ηr distp(x, argmin g) for each x ∈ B(x̄, r).
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Linearized Proximal Algorithm LPA

Let D(x) := {d ∈ Rn : F(x) + F′(x)d ∈ C} and x̄ ∈ Rn. We say that x̄ is
a regular point (proposed by [J. V. Burke and M. C. Ferris, Math.
Program. 1995]) of inclusion F(x) ∈ C if

ker(F′(x̄)T) ∩ (C − F(x̄))⊖ = {0};

a quasi-regular point (proposed by [C. Li and K. F. Ng, SIAM J.
Optim. 2007]) of inclusion F(x) ∈ C if there exist r > 0 and βr > 0
such that

βrdist(0,D(x)) ≤ dist(F(x),C) for each x ∈ B(x̄, r).
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Linearized Proximal Algorithm LPA

Drawbacks/limitations of the CLPA:
The CLPA does not work very efficiently in the case when p > 2.
In the case when p = 2, the convergence performance of the CLPA is
sensitive to the choice of the stepsize (related to weak sharp minima
modulus and the quasi-regular modulus).
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Linearized Proximal Algorithm LPA

In our recent paper, assume that the optimal value hmin of the function h
is known and propose an algorithm called ALPA by using an adaptive
stepsize:

vk = min{θwα
k , v},

where wk := h(F(xk))− hmin, and 0 < θ < 1, α > 0, v > 0 are constants.
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Linearized Proximal Algorithm LPA

We assume the following blanket assumptions denoted by (H):
(A1): F(x̄) ∈ C, F′ is locally Lipschitz around x̄,
(A2): x̄ is a quasi-regular point of inclusion F(x) ∈ C,
(A3): F(x̄) is a local weak sharp minimizer of order p for h.
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Linearized Proximal Algorithm LPA

Theorem
Assumptions:

CLPA: p ∈ [1, 2) or the stepsize vk < η(x̄)β(x̄)2

4
a (if p = 2).b

ALPA: p ≥ 1, α > p − 2.
Conclusion:
{xk} converges locally to a solution x∗ satisfying F(x∗) ∈ C at a rate of

CLPA: 2
p ,5

ALPA: min{2, 2+α
p }. In particular, {xk} converges quadratically if

α ≥ 2p − 2.
aη(x̄) is the local weak sharp minimizer constant of order 2, and β(x̄) is the

quasi-regularity constant.
b[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016].
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Linearized Proximal Algorithm LPA

If we further assume that

(A4): (h − hmin)
1
s is locally Lipschitz at F(x̄) with s ≥ 1.

Theorem
Assumptionsa:

p ≥ 1, s > 1+
√

[1+2p(p−2)]+
2

b, α ∈ (p−2
s , 2s−2

p ]

Conclusion:
{xk} generated by the ALPA converges locally at a rate of min{2s

p ,
2+αs

p }
to a solution x∗ satisfying F(x∗) ∈ C. In particular, {xk} converges
quadratically if s = p and α = 2 − 2

p .
a(A2)+(A3) could be weakened to the following:

(A5): x̄ is a local weak sharp minimizer of order p for h ◦ F.
b(A4)+(A5) imply that s ≤ p.
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Linearized Proximal Algorithm LPA

Comparison between the CLPA and the ALPA:
The restriction p ≤ 2 for CLPA is dropped and estimates of constant
vk < η(x̄)β(x̄)2

4
1 are avoided when p = 2.

The convergence rate is improved by choosing suitable α, and even in
the case when p ≥ 2, the convergence could be quadratic.

1η(x̄) is the local weak sharp minimizer constant of order 2, and β(x̄) is the
quasi-regularity constant.
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Linearized Proximal Algorithm Inexact LPA

Algorithm (Inexact CLPA [Y. Hu et al., SIAM J. Optim. 2016])
Initializing: θ > 0, ρ > 0, an initial point x0 ∈ Rn, d−1 ∈ Rn and a stepsize
v0 > 0.
Iteration of xk → xk+1 (by setting ϵk = θ∥dk−1∥ρ):

If h(F(xk)) = mind∈Rn
{

h(F(xk) + F′(xk)d) + vk∥d∥2}, then stop;
else if h(F(xk)) ≤ mind∈Rn

{
h(F(xk) + F′(xk)d) + vk∥d∥2}+ ϵk, then

we set

dk = ∥dk−1∥ρ−1dk−1,
xk+1 = xk + dk.

otherwise, we set

dk = ϵk-argmind∈Rn
{

h(F(xk) + F′(xk)d) + vk∥d∥2} ,
xk+1 = xk + dk.
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Linearized Proximal Algorithm Inexact LPA

Algorithm (Inexact ALPA)
Initializing: 0 < θ < 1, α > 0, ρ > 0, v > 0 and an initial point x0 ∈ Rn.
Iteration of xk → xk+1 (by setting ϵk ≤ θwρ

k):
Set vk = min{θwα

k , v}.
If h(F(xk)) = mind∈Rn

{
h(F(xk) + F′(xk)d) + vk∥d∥2}, then stop;

otherwise, we set ϵk = θϵk until

h(F(xk)) > min
d∈Rn

{
h(F(xk) + F′(xk)d) + vk∥d∥2}+ ϵk

and then set

dk = ϵk-argmind∈Rn
{

h(F(xk) + F′(xk)d) + vk∥d∥2} ,
xk+1 = xk + dk.
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Linearized Proximal Algorithm Inexact LPA

Theorem
Assumptions:

CLPA: p ∈ [1, 2) or the stepsize vk < η(x̄)β(x̄)2

32 (if p = 2); ρ > 2.a

ALPA: p ≥ 1, α > p − 2, ρ ≥ α+ 2.
Conclusion:
{xk} converges locally to a solution x∗ satisfying F(x∗) ∈ C at a rate of

CLPA: min
{

ρ
2 ,

2
p

}
,a

ALPA: min{2, 2+α
p }. In particular, {xk} converges quadratically if

α ≥ 2p − 2.
a[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016].

For the ALPA, since larger ρ requires more cost for solving the
subproblem, we can apply ρ = α+ 2 instead of ρ ≥ α+ 2 but with
same convergence rate.
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Linearized Proximal Algorithm Inexact LPA

If we further assume that

(A4): (h − hmin)
1
s is locally Lipschitz at F(x̄) with s ≥ 1.

Theorem
Assumptions:

p ≥ 1, s > 1+
√

[1+2p(p−2)]+
2 , α ∈ (p−2

s , 2s−2
p ], ρ ≥ α+ 2.

Conclusion:
{xk} generated by the ALPA converges locally at a rate of min{2s

p ,
2+αs

p }
to a solution x∗ satisfying F(x∗) ∈ C. In particular, {xk} converges
quadratically if s = p and α = 2 − 2

p .
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Linearized Proximal Algorithm Inexact LPA

In the case when assumptions (A1)-(A4) of theorems hold, then the
inexact ALPA owns the following convergence rate

q =

{
min{2, 2+α

p }, if (p, α, ρ) satisfies (C1);
min{2s

p ,
2+αs

p }, if (p, s, α, ρ) satisfies (C2).

(C1) : p ≥ 1, α > p − 2, ρ ≥ α+ 2,

(C2) : p ≥ 1, s > 1+
√

[1+2p(p−2)]+
2 , α ∈

(p−2
s , 2s−2

p
]
, ρ ≥ α+ 2.
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Linearized Proximal Algorithm Globalized LPA

Algorithm (Globalized CLPA [Y. Hu et al., SIAM J. Optim. 2016])
Initializing: θ > 0, ρ > 0, c ∈ (0, 1), γ ∈ (0, 1), x0 ∈ Rn and v0 > 0.
Iteration of xk → xk+1: (by setting ϵk = θ∥dk−1∥ρ)

Generate dk by exact CLPA,
Set

xk+1 = xk + tkdk,

where tk is the maximum value of γ i for i = 0, 1, . . . , such that

h(F(xk + γ idk))− h(F(xk)) ≤ cγ i(h(F(xk) + F′(xk)dk)
+vk∥dk∥2 − h(F(xk))).
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Linearized Proximal Algorithm Globalized LPA

Algorithm (Globalized ALPA)
Initializing: 0 < θ < 1, ρ > 0, c ∈ (0, 1), γ ∈ (0, 1), x0 ∈ Rn and v0 > 0.
Iteration of xk → xk+1: (by setting ϵk ≤ θwρ

k)
Generate dk by inexact ALPA,
Set

xk+1 = xk + tkdk,

where tk is the maximum value of γ i for i = 0, 1, . . . , such that

h(F(xk + γ idk))− h(F(xk)) ≤ cγ i(h(F(xk) + F′(xk)dk)
+vk∥dk∥2 − h(F(xk))).
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Linearized Proximal Algorithm Globalized LPA

We assume for the following theorems that:
{xk} is the sequence generated by the Globalized LPA and x̄ is a
cluster point of this sequence such that the blanket assumptions (H)
holds.
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Linearized Proximal Algorithm Globalized LPA

Theorem
Assumptions:

Globalized exact CLPA: 1 ≤ p < 2.a

Globalized inexact ALPA: 1 ≤ p < 2, ρ ≥ α+ 2.
Conclusion:
{xk} converges to x̄ at a rate of

Globalized exact CLPA: 2
p ,a

Globalized inexact ALPA: min{2, 2+α
p }.

a[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016].
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Linearized Proximal Algorithm Globalized LPA

If we further assume that

(A4): (h − hmin)
1
s is locally Lipschitz at F(x̄) with s ≥ 1.

Theorem
Assumptions:

p ≥ 1, s > 1+
√

[1+2p(p−2)]+
2 , α ∈ (p−2

s , 2s−2
p ], ρ ≥ α+ 2.

Conclusion:
{xk} converges to x̄ at a rate of min{2s

p ,
2+αs

p }.
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Applications Convex Inclusion Problem

Convex inclusion problem is at the core of the modeling of many
problems in various areas of mathematics and physical sciences:

Find x such that F(x) ∈ Q,

where F : Rn → Rm is continuously differentiable and Q ⊆ Rm is a
closed convex set.
Convex composite optimization reformulation:

min
x∈Rn

h(F(x)), where h(·) := 1
pdistp(·,Q).

The first-order optimality condition of the LPA’s subproblem (p > 1):

Gx,u(d) := dp−2(F(x) + F′(x)d,Q)F′(x)⊤(I− PQ)(F(x) + F′(x)d)
+2ud = 0
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Applications Convex Inclusion Problem

Algorithm (ALPA for p > 1)
Initializing: 0 < θ < 1, α > 0, ρ > 0, x0 ∈ Rn.
Iteration of xk → xk+1 (by setting ϵk ≤ θwρ

k):
Set vk = min{θwα

k , v}.
If Gxk,vk(0) = 0, then stop;
otherwise, we set ϵk = θϵk until

∥Gxk,vk(0)∥ >
√

2vkϵk,

and then generate dk by solving the nonlinear equations

Gxk,vk(d) = 0

such that ∥Gxk,vk(dk)∥ ≤
√

2vkϵk, and set xk+1 = xk + dk.
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Applications Convex Inclusion Problem

We assume the following assumptions for the remainder:
x̄ ∈ X∗2,
F′ is locally Lipschitz around x̄,
imF′(x̄)− Q = Rm.

2X∗ is the solution set of the convex inclusion problem.
Linglingzhi Zhu (ZJU) ALPA 31 / 55



Applications Convex Inclusion Problem

Theorem
Assumptions:

CLPA: p = 2, vk < 1
64β̄2 , ρ > 1, where β̄ := sup

∥y∥≤1
inf

F′(x̄)d∈y+Rm
−

∥d∥.a

ALPA: (C1) p > 1, α > max{p − 2, 2 − 2
p}, ρ ≥ α+ 2, or

(C2) p > 1, α ∈
(
1 − 2

p , 2 − 2
p
]
, ρ ≥ α+ 2.

Conclusion: {xk} converges locally to a solution x∗ satisfying x∗ ∈ X∗

CLPA: linearly,a

ALPA: at a rate of

q =

{
min{2, 2+α

p }, if (p, α, ρ) satisfies (C1),
min{2, 2+αp

p }, if (p, α, ρ) satisfies (C2).

a[Y. Hu, C. Li and X. Yang, SIAM J. Optim. 2016].
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Applications Convex Inclusion Problem

Algorithm (Globalized ALPA for p > 1)
Initializing: c ∈ (0, 1), γ ∈ (0, 1) and x0 ∈ Rn.
Iteration of xk → xk+1:

Generate dk by the ALPA for p > 1,
Set

xk+1 = xk + tkdk,

where tk is the maximum value of γ i for i = 0, 1, . . . , such that
1
p∥F(xk + γ idk)+∥p − 1

p∥F(xk)+∥p

≤ cγ i( 1
p∥(F(xk) + F′(xk)dk)+∥p + vk∥dk∥2 − 1

p∥F(xk)+∥p).
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Applications Convex Inclusion Problem

Theorem
Assumptions:

{xk} is the sequence generated by the Globalized ALPA for p > 1 and
x̄ is a cluster point of this sequence,
(C1) p ∈ (1, 2), α > 2 − 2

p , ρ ≥ α+ 2, or
(C2) p > 1, α ∈

(
1 − 2

p , 2 − 2
p
]
, ρ ≥ α+ 2.

Conclusion:
{xk} converges to x̄ ∈ X∗ at a rate of

q =

{
min{2, 2+α

p }, if (p, α, ρ) satisfies (C1),
min{2, 2+αp

p }, if (p, α, ρ) satisfies (C2).
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Applications Nonnegative Inverse Eigenvalue Problem

Nonnegative Inverse Eigenvalue Problem (NIEP)
Given an n-tuple {λ1, λ2, · · · , λn} which is a spectrum for nonnegative
matrices, find X ∈ Rn×n

+ whose eigenvalues are {λ1, λ2, · · · , λn}.
Define the block diagonal matrix
Λ := blkdiag(λ[2]

1 , · · · , λ[2]
s , λ2s+1, · · · , λn), where

λ
[2]
i :=

[
ai bi
−bi ai

]
, ai, bi ∈ R with bi ̸= 0 for all i = 1, · · · , s

and λi ∈ R, i = 2s + 1, · · · , n.
The set of all isospectral matrices (by Schur decomposition):

S(Λ) := {X ∈ Rn×n : X = U(Λ + V)UT, U ∈ O(n), V ∈ V}

where O(n) := {U ∈ Rn×n : UTU = In×n},
V := {V ∈ Rn×n : Vij = 0 for all (i, j) ∈ I} and
I := {(i, j) : i ≥ j or Λij ̸= 0}.
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Applications Nonnegative Inverse Eigenvalue Problem

Let the mapping F : Rn×n × V → Rn×n × Rn×n

F(U,V) := (U(Λ + V)U⊤,UU⊤ − In×n),

The NIEP has a solution if and only if there exists (U,V) ∈ O(n)×V such
that F(U,V) ∈ Q := Rn×n

+ × {0}.

Now the NIEP can be solved by the CLPA and ALPA by letting the outer
function h : Rn×n × Rn×n → R

h(·) := 1
pdp(·,Rn×n

+ × {0}).
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Applications Nonnegative Inverse Eigenvalue Problem

The accuracy of algorithms are evaluated by

RES :=
√
∥[U∗(Λ + V∗)U⊤

∗ ]−∥2
F + ∥U∗U⊤

∗ − In×n∥2
F,

where U∗ and V∗ forming Schur decomposition of estimated results.
The stopping criterion of the CLPA and ALPA type algorithms:
Outer iteration: the number of iterations is greater than 100

or RES < 1e-4.
Inner iteration: the number of iterations is greater than 50 or

CLPA: Gxk,v(d) < max{θ∥dk−1∥ρ, 10−(2p+4)};
ALPA: Gxk,vk(d) < max{

√
2θvkwρ

k, 10−(2p+4)}.
Except extra assumptions, set v = 0.005, c = γ = 0.9, θ = 0.5,
α = 1, ρ = 2.
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ALPA: Gxk,vk(d) < max{

√
2θvkwρ

k, 10−(2p+4)}.
Except extra assumptions, set v = 0.005, c = γ = 0.9, θ = 0.5,
α = 1, ρ = 2.
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Table 1: The result of the NIEP solved by the CLPA and ALPA when p = 2.

Algorithm CLPA ALPA
n CPU time RES CPU time RES
10 0.0849 s 6.5e-05 0.0639 s 3.8e-05
50 1.7763 s 2.9e-05 1.3076 s 4.7e-06
100 17.422 s 1.1e-05 8.6562 s 8.0e-05
150 70.795 s 7.8e-05 43.408 s 1.1e-06
200 163.46 s 4.3e-05 88.427 s 5.9e-07

Linglingzhi Zhu (ZJU) ALPA 38 / 55



Applications Nonnegative Inverse Eigenvalue Problem

Table 2: The result of the NIEP solved by the CLPA and ALPA when p = 4.

Algorithm CLPA ALPA
n CPU time RES CPU time RES
10 N/A3 0.1601 s 4.2e-05
50 N/A 27.741 s 2.5e-05
100 N/A 148.77 s 8.5e-05
150 N/A 459.96 s 6.3e-05
200 N/A 1260.5 s 1.1e-05

3It means the algorithm cannot reach the stopping criterion in tenfold CPU time of
the ALPA for corresponding case.
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Table 3: The result of the RINC and ALPA (p = 2) for the NIEP (dense matrices).

dense matrices
Algorithm RINC4 ALPA

n CPU time RES CPU time RES
10 0.01 s 9.5e-05 0.05 s 8.6e-06
20 0.03 s 5.9e-06 0.12 s 6.0e-06
50 0.21 s 4.5e-05 1.05 s 1.2e-07
80 0.52 s 1.4e-06 4.71 s 5.3e-07
100 1.02 s 2.4e-05 8.15 s 2.1e-07

4Riemannian inexact Newton-CG method [Z. Zhao, Z. Bai and X. Jin, Numer.
Math., 2018].
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Table 4: The result of the RINC and ALPA (p = 2) for the NIEP (1% sparse
matrices).

1% sparse matrices
Algorithm RINC ALPA

n CPU time RES CPU time RES
10 1.22 s 9.9e-05 0.21 s 9.5e-07
20 21.7 s 9.7e-05 2.73 s 3.7e-07
50 N/A 5.76 s 7.7e-06
80 N/A 11.7 s 3.1e-05
100 N/A 18.4 s 1.6e-07
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Sensor Network Localization Problem
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Figure 1: The sensor network localization problem is to estimate the positions of
the sensors in a network by using the given incomplete pairwise short distance
measurements. The sensors can only detect each other when their distance is
within the radio range (depends on the quality of the sensors).
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The sensor network localization problem is to find {x1, . . . , xn}
satisfying:

∥xi − xj∥2 = d2
ij, ∥ak − xj∥2 = d̄2

kj, (i, j) ∈ Ne, (k, j) ∈ Me,

∥xi − xj∥2 > R2, ∥ak − xj∥2 > R2, (i, j) /∈ Ne, (k, j) /∈ Me.

xi: the position of sensor (variable), ak: the position of anchor.
dij: the short distance between sensors,
d̄kj: the short distance between anchor and sensor,
R: the radio range.
Ne: the sets of sensor-sensor edges, whose length is less or equal to
the radio range,
Me: the sets of sensor-anchor edges, whose length is less or equal to
the radio range.
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Let
F(x) := (g(x), ḡ(x)) for each x ∈ R2×n,

where

g(x) := ((gi,j,1(x))(i,j)/∈Ne , (gi,j,2(x))(i,j)/∈Me),

ḡ(x) := ((ḡi,j,1(x))(i,j)∈Ne , (ḡi,j,2(x))(i,j)∈Me),

and

gi,j,1(x) := R2 − ∥xi − xj∥2, (i, j) /∈ Ne,

gi,j,2(x) := R2 − ∥ai − xj∥2, (i, j) /∈ Me,

ḡi,j,1(x) := ∥xi − xj∥2 − d2
ij, (i, j) ∈ Ne,

ḡi,j,2(x) := ∥ai − xj∥2 − d̄2
ij, (i, j) ∈ Me.
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Let

Q := R
1
2 n(n−1)+mn−|Ne|−|Me|
− × {0} ⊆ R

1
2 n(n−1)+mn,

where | · | denotes the cardinality of a set.

Now, the CLPA and ALPA can solve the sensor network localization
problem as a convex inclusion problem F(x) ∈ Q.
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Neglecting all inequality constraints, many works concentrate on the
following relaxation model

∥xi − xj∥2 = d2
ij, (i, j) ∈ Ne,

∥ak − xj∥2 = d̄2
kj, (k, j) ∈ Me.

The MDS (Multidimensional Scaling) can be used to solve the
incorporate distance measurement localization problem as above
model [X. Ji and H. Zha, IEEE INFOCOM 2004].
The SDR (Semi-Definite Relaxation) [P. Biswas et al., IEEE Trans.
Automat. Sci. Engrg. 2006], [Z.-Q. Luo et al., IEEE Signal Proc.
Mag. 2010] is also a popular technique to solve the above relaxation
model.
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Table 5: List of the algorithms for solving the sensor network localization problem.

Abbreviations Algorithms
MDS MultiDimensional Scaling method (relaxed problem).
SDR SemiDefinite Relaxation method (relaxed problem).
CLPA CLPA (full problem).
ALPA ALPA (full problem).
CLPA-R CLPA (relaxed problem).
ALPA-R ALPA-R (relaxed problem).
MDS-CLPA CLPA with initial points by MDS (full problem).
MDS-ALPA ALPA with initial points by MDS (full problem).
MDS-CLPA-R CLPA with initial points by MDS (relaxed problem).
MDS-ALPA-R ALPA with initial points by MDS (relaxed problem).
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The root mean square distance (RMSD) is a key criterion to
characterize the accuracy of the estimation:

RMSD =
1√
n

( n∑
i=1

∥si − xi∥2
) 1

2

,

where si is the true position of the sensor, and xi is the estimated
position of the sensor.
The stopping criterion of the CLPA and ALPA type algorithms:
Outer iteration: the number of iterations is greater than 100

or RMSD < 1e-10.
Inner iteration: the number of iterations is greater than 50 or

CLPA: Gxk,v(d) < θ∥dk−1∥ρ;
ALPA: Gxk,vk(d) <

√
2θvkwρ

k.
Except extra assumptions, set p = 2, v = 0.005, c = γ = 0.9,
θ = 0.5, α = 1, ρ = 2.
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Table 6: The numerical results for a WSN localization problem (200 sensors, 20
anchors, radio range=0.3 and initial points: random).

Algorithm MDS SDR CLPA ALPA CLPA-R ALPA-R
RMSD 1.0e-3 2.8e-8 1.8e-11 2.2e-13 1.6e-11 7.8e-13

CPU time 0.3 s 38.6 s 1.7 s 1.5 s 0.6 s 0.5 s
3s-S rate5 0% 0% 99% 99% 67% 68%
2s-S rate 0% 0% 64% 64% 67% 68%

5The estimation is regarded as “ts-successful” if the estimated RMSD is less than
1e-5 within t seconds. “ts-S rate” denotes the ratio of “ts-successful” estimating in 100
random trials.
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Table 7: The numerical results for a WSN localization problem (200 sensors, 20
anchors, radio range=0.3 and initial points: given by the MDS).

Algorithm CLPA ALPA CLPA-R ALPA-R
RMSD 1.7e-11 2.2e-13 1.4e-11 5.6e-13

CPU time 0.6 s 0.3 s 0.2 s 0.1 s
CPU time (+MDS) 0.9 s 0.6 s 0.5 s 0.4 s

1s-S rate 99% 99% 99% 99%
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Obesrvations:
The CLPA and ALPA achieve a more precise solution within less CPU
time than the SDR.
The CLPA and ALPA consume more CPU time than the CLPA-R and
ALPA-R, because the CLPA and ALPA are designed to solve the full
version problem whose number of constraints is more than double
that of relaxation problem solved by the CLPA-R and ALPA-R.
When random initial points are used, the CLPA and ALPA own more
robust 3s-successful rate than the CLPA-R and ALPA-R as well as the
MDS and SDR, which is benefited from more constraints information.
When good initial points are given by the MDS, the CLPA/CLPA-R
and ALPA/ALPA-R will be faster with high successful rate;
particularly the ALPA/ALPA-R are much faster than the
CLPA/CLPA-R.
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Figure 2: The performance of the CLPA and the ALPA type algorithms for a
sensor network localization problem (p = 2, 200 sensors, 20 anchors, and radio
range = 0.3). Initial points: sensor + 0.01 ∗ randn(2, n).
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Table 8: The CPU time of CLPA/ALPA with different initial points for the WSN
localization problem (200 sensors, 20 anchors, radio range=0.3).

Algorithm CLPA ALPA CLPA-R ALPA-R
random initial points 1.7 s 1.5 s 0.6 s 0.5 s

sensor+0.5∗randn(2,n) 1.5 s 1.2 s 0.6 s 0.5 s
sensor+0.1∗randn(2,n) 1.0 s 0.6 s 0.4 s 0.2 s
sensor+0.01∗randn(2,n) 0.6 s 0.3 s 0.3 s 0.1 s
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Results of the ALPA with different α
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Figure 3: The CPU time of ALPA along with α for the NIEP (p = 2 and
n = 200)/Sensor Network Localization Problem (200 sensors, 20 anchors, radio
range = 0.3, and initial points: random.)
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Thank You for Your Attention.
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