Minimax Optimization

Nonsmooth Composite Nonconvex-Concave

Linglingzhi Zhu

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong

26 Nov 2022

Joint work with Jiajin Li and Anthony Man-Cho So.

The 1st ORSHK Young Researchers Workshop

Nonconvex-concave minimax problems of the form $\min_{x\in\mathcal{X}}\max_{y\in\mathcal{Y}}F(x,y),$ where $F: \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ is nonconvex-concave • $\mathfrak{X} \subseteq \mathbb{R}^n$ is closed convex (possibly compact)

$$\mathcal{Y}\subseteq \mathbb{R}^d$$
 is convex compact

Gradient Descent Ascent (GDA)

• Gradient Descent Ascent (GDA):

$$x^{k+1} := x^k - \alpha_k \nabla_x F(x^k, y^k),$$

$$y^{k+1} := y^k + \tau_k \nabla_y F(x^{k+1}, y^k),$$

where α_k and τ_k are the step sizes.

Strongly-Concave

GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ [Lin et al. 2020] — matching the optimal!

Concave: GDA suffers from **oscillation** — diminishing step size strategies $\mathcal{O}(\epsilon^{-6})$ [Lin et al. 2020].

Gradient Descent Ascent (GDA)

• Gradient Descent Ascent (GDA):

$$x^{k+1} := x^k - \alpha_k \nabla_x F(x^k, y^k),$$

$$y^{k+1} := y^k + \tau_k \nabla_y F(x^{k+1}, y^k),$$

where α_k and τ_k are the step sizes.

Strongly-Concave:

GDA can generate an ϵ -stationary solution with iteration complexity $O(\epsilon^{-2})$ [Lin et al. 2020] — matching the optimal!

Concave: GDA suffers from oscillation — diminishing step size strategies $O(e^{-6})$ [Lin et al. 2020].

Gradient Descent Ascent (GDA)

• Gradient Descent Ascent (GDA):

$$x^{k+1} := x^k - \alpha_k \nabla_x F(x^k, y^k),$$

$$y^{k+1} := y^k + \tau_k \nabla_y F(x^{k+1}, y^k),$$

where α_k and τ_k are the step sizes.

Strongly-Concave:

GDA can generate an ϵ -stationary solution with iteration complexity $O(\epsilon^{-2})$ [Lin et al. 2020] — matching the optimal!

• Concave: GDA suffers from oscillation — diminishing step size strategies $\mathcal{O}(\epsilon^{-6})$ [Lin et al. 2020].

Oscillation of GDA

Iterative Scheme:

$$\begin{aligned} x^{k+1} &= x^{k} - \alpha_{k} [\nabla_{x} F(x^{k}, y^{k}) + \gamma(x^{k} - z^{k})], \\ y^{k+1} &= \text{proj}_{\mathcal{Y}}(y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k})), \\ z^{k+1} &= z^{k} + \beta(x^{k+1} - z^{k}), \end{aligned}$$

where α_k and τ_k are the step sizes, β is the extrapolation parameter.

Strongly Concave [Zhang et al. 2020]: Smoothed GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ — matching the optimal!

Iterative Scheme:

$$\begin{aligned} x^{k+1} &= x^{k} - \alpha_{k} [\nabla_{x} F(x^{k}, y^{k}) + \gamma(x^{k} - z^{k})], \\ y^{k+1} &= \text{proj}_{\mathcal{Y}}(y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k})), \\ z^{k+1} &= z^{k} + \beta(x^{k+1} - z^{k}), \end{aligned}$$

where α_k and τ_k are the step sizes, β is the extrapolation parameter.

 Strongly Concave [Zhang et al. 2020]: Smoothed GDA can generate an ε-stationary solution with iteration complexity O(ε⁻²) — matching the optimal!

Iterative Scheme:

$$\begin{aligned} x^{k+1} &= x^{k} - \alpha_{k} [\nabla_{x} F(x^{k}, y^{k}) + \gamma(x^{k} - z^{k})], \\ y^{k+1} &= \text{proj}_{\mathcal{Y}}(y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k})), \\ z^{k+1} &= z^{k} + \beta(x^{k+1} - z^{k}), \end{aligned}$$

where α_k and τ_k are the step sizes, β is the extrapolation parameter.

- Strongly Concave [Zhang et al. 2020]: Smoothed GDA can generate an ε-stationary solution with iteration complexity O(ε⁻²) — matching the optimal!
- Concave: $O(e^{-4})$ [Zhang et al. 2020] best known result.

- (Smoothed) GDA relies on gradient Lipschitz condition.
- (Rafique et al. 2021) has proposed an algorithm for general nonsmooth weakly convex-concave problems but suffers from the **slow iteration complexity** $\mathcal{O}(\epsilon^{-6})$.

Can we design a provably efficient algorithm to address nonsmooth nonconvex-concave (NNC-C) minimax problems, which matches the best known results for smooth case?

- (Primal Function) $F(\cdot, y) := h_y \circ c_y$, where - $c_y : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 and $\|\nabla c_y(x) - \nabla c_y(x')\| \leq L_c \|x - x'\|$ for all $x, x' \in \mathcal{X}$, - $h_y : \mathbb{R}^m \to \mathbb{R}$ is convex and Lipschitz.
- For example, $h_y = \| \cdot \|_p$, where $p = \{1, 2, +\infty\}$.

• (**Dual Function**) $F(x, \cdot)$ is concave and C^1 on \mathcal{Y} with $\nabla_y F(\cdot, \cdot)$ being *L*-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$\|\nabla_y F(x, y) - \nabla_y F(x', y')\| \leq L \|(x, y) - (x', y')\|$$

for all $(x, y), (x', y') \in \mathfrak{X} \times \mathfrak{Y}.$

NNC-C minimax problem has attracted intense attention across **optimization** and **machine learning** communities.

- Adversarial Training
- Generative Adversarial Network (GAN)
- Distributionally Robust Optimization (DRO)

Applications

- Distributionally Robust Optimization (DRO): $\min_{x \in \mathcal{X}} \max_{Q \in \mathcal{U}(\mathbb{P}_N)} \mathbb{E}_{\xi \sim Q}[f(x; \xi)]$
 - \mathbb{P}_N : empirical distribution;
 - $\mathcal{U}(\mathbb{P}_N)$: ambiguity set defined by a host of probability metrics, e.g., *f*-divergence, Wasserstein, etc

$$\mathfrak{U}(\mathbb{P}_N) = \{Q: d(Q, \mathbb{P}_N) \leqslant r\}.$$

Variation Regularized Wasserstein DRO:

$$\min_{\theta} g(\theta) := \mathbb{E}_{\mathbb{P}_N} \left[\ell(y, f_{\theta}(x)) \right] + \rho \max_{i \in [N]} \| \nabla_x \ell(y_i, f_{\theta}(x_i)) \|_p.$$

Smoothed Proximal Linear Descent Ascent (Smoothed PLDA):

$$\begin{aligned} x^{k+1} &:= \operatorname*{argmin}_{x \in \mathcal{X}} \left\{ h_{y^k} \left(c_{y^k}(x^k) + \nabla c_{y^k}(x^k)^\top (x - x^k) \right) \\ &+ \frac{\lambda}{2} \| x - x^k \|^2 + \frac{r}{2} \| x - z^k \|^2 \right\} \\ y^{k+1} &:= \operatorname{proj}_{\mathcal{Y}} \left(y^k + \alpha \nabla_y F(x^{k+1}, y^k) \right) \\ z^{k+1} &:= z^k + \beta (x^{k+1} - z^k) \end{aligned}$$

No available gradient information due to composite structure $h_y \circ c_y$. Here, we invoke the proximal linear scheme for the primal update. Table 1: Comparison of the iteration complexities of smoothed PLDA proposed in this paper and other related methods under different settings for solving $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F(x, y)$.

	Primal Func.	Dual Func.	Iter. Compl. ¹	Add. Asm.
GDA	L-smooth	concave	$\mathcal{O}(\epsilon^{-6})$	$\mathcal{X} = \mathbb{R}^n$
Smoothed GDA	L-smooth	concave	$\mathcal{O}(\epsilon^{-4})$	_
PG-SMD	weakly-convex	concave	$\mathcal{O}(\epsilon^{-6})$	${\mathcal X}$ bounded
This paper	nonsmooth composite	concave	$\mathcal{O}(\epsilon^{-4})$	
GDA	L-smooth	strongly-concave	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{X} = \mathbb{R}^n$
Smoothed GDA	L-smooth	PŁ condition	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{Y} = \mathbb{R}^d$
This paper	nonsmooth composite	KŁ exponent $\theta = \frac{1}{2}$	$\mathcal{O}(\epsilon^{-2})$	_

Lipschitz-type Primal Error Bound Condition

Main Technical Results I

For any $k \ge 0$, it holds that

$$||x^{k+1}-x_r(y^k,z^k)|| \leq \zeta ||x^k-x^{k+1}||,$$

where
$$\zeta := \frac{2(r-L)^{-1}+(\lambda+L)^{-1}}{(\lambda+L)^{-1}} \left(\sqrt{\frac{2L}{\lambda+L}}+1\right)$$
 and $x_r(y,z) := \underset{x \in \mathcal{X}}{\operatorname{argmin}} F_r(x, y, z) := F(x, y) + \frac{r}{2} \|x - z\|^2.$

Smooth case: Luo-Tseng error bound condition

$$\|x^{k+1}-x_r(y^k,z^k)\| \leq \zeta \|x^k - \underbrace{\operatorname{proj}_{\mathfrak{X}}(x^k-c\nabla_x F_r(x^k,y^k,z^k))}_{x^{k+1}})\|,$$

Define a Lyapunov function as

$$\Phi_r(x, y, z) := \underbrace{F_r(x, y, z) - d_r(y, z)}_{\text{Primal Descent}} + \underbrace{p_r(z) - d_r(y, z)}_{\text{Dual Ascent}} + \underbrace{p_r(z)}_{\text{Proximal Descent}}$$

•
$$d_r(y, z) := \min_{x \in \mathcal{X}} F_r(x, y, z);$$

$$\blacktriangleright p_r(z) := \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F_r(x, y, z);$$

Sufficient Decrease Property

Proposition

$$r \ge 3L, \ \lambda \ge L, \ \beta \le \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\} \ \text{and} \ \alpha \le \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}.$$

Then for any $k \ge 0$,

$$\begin{split} \Phi_r^k - \Phi_r^{k+1} &\ge \frac{\lambda}{16} \|x^k - x^{k+1}\|^2 + \frac{1}{8\alpha} \|y^k - y_+^k(z^k)\|^2 + \frac{4r}{7\beta} \|z^k - z^{k+1}\|^2 \\ &- \frac{28r\beta \|x_r^*(z^k) - x_r(y_+^k(z^k), z^k)\|^2}{r_r(z^k), z^k)\|^2}, \end{split}$$
where $y_+(z) := \operatorname{proj}_{\mathcal{Y}} \left(y + \alpha \nabla_y F_r(x_r(y, z), y, z) \right)$ and $x_r^*(z) := \operatorname{argmin}_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F_r(x, y, z).$

KŁ Exponent $\boldsymbol{\theta}$ for the Dual Function

For any fixed $x \in \mathfrak{X}$, there exist $\mu > 0$ and $\theta \in [0, 1)$ such that

dist
$$(0, -\nabla_{y}F(x, y) + \partial \iota_{\mathcal{Y}}(y)) \ge \mu \left(\max_{y' \in \mathcal{Y}}F(x, y') - F(x, y)\right)^{\theta}$$
,

for any $y \in \mathcal{Y}$.

Generalization of the strong concavity of the dual function.

Dual Error Bound Condition

Main Technical Results II

Suppose that the dual function satisfies KŁ property with exponent $\theta \in [0,1).$ Then

$$||x_r^*(z) - x_r(y_+(z), z)|| \leq \omega ||y - y_+(z)||^{\frac{1}{2\theta}},$$

where
$$\omega := \frac{\sqrt{2}}{\sqrt{r-L}} \left(\frac{(1+\alpha L)(r-L+2\alpha L(r+L))}{\alpha \mu (r-L)} \right)^{\frac{1}{2\theta}}$$
.

Explicitly control the trade-off between the decrease in the primal and the increase in the dual.

Definition

The pair $(x, y) \in \mathfrak{X} \times \mathfrak{Y}$ is an ϵ -game stationary point $(\epsilon$ -GS) if ¹

 $\|\nabla_x d_r(y,x)\| \leqslant \epsilon$ and $\operatorname{dist}(0, -\nabla_y F(x,y) + \partial \iota_y(y)) \leqslant \epsilon$.

With the aid of our newly developed dual error bound condition, we can clarify the relationship among various stationarity concepts quantitatively.

 $\|\nabla_x d_r(y, x)\|$ reduces to $\operatorname{dist}(0, -\nabla_x F(x, y) + \partial \iota_{\mathfrak{X}}(x))$ for the smooth case.

Definition

The pair $(x, y) \in \mathfrak{X} \times \mathfrak{Y}$ is an ϵ -game stationary point $(\epsilon$ -GS) if ¹

 $\|\nabla_x d_r(y,x)\| \leqslant \epsilon$ and $\operatorname{dist}(0, -\nabla_y F(x,y) + \partial \iota_y(y)) \leqslant \epsilon$.

With the aid of our newly developed <u>dual error bound condition</u>, we can clarify the relationship among various stationarity concepts quantitatively.

 $\|\nabla_x d_r(y, x)\|$ reduces to $\operatorname{dist}(0, -\nabla_x F(x, y) + \partial \iota_{\mathfrak{X}}(x))$ for the smooth case.

Quantitative Results for Stationarities

• The point $x \in \mathcal{X}$ is an ϵ -optimization stationary² (ϵ -OS) if

$$\|\operatorname{prox}_{\frac{1}{r}f+\iota_{\mathfrak{X}}}(x)-x\|\leqslant\epsilon.$$

Main Technical Results III

Suppose that the pair $(x, y) \in \mathfrak{X} \times \mathfrak{Y}$ is ϵ -GS. Then, x is $\mathfrak{O}(\epsilon^{\frac{1}{2}})$ -OS. Moreover, if the dual function satisfies KŁ property with exponent θ , then x is $\mathfrak{O}(\epsilon^{\min\{1,\frac{1}{2\theta}\}})$ -OS.

²It reduce to d(0, $\partial(f + \iota_{\mathfrak{X}})(x)$) for the smooth case with $f := \max_{y \in \mathcal{Y}} F(\cdot, y)$.

Main Theorem — Iteration Complexity

Suppose that
$$r \ge 3L$$
, $\lambda \ge L$, $\beta \le \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\}$ and $\alpha \le \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}$. Then for any $k \ge 0$,

• General concave: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4}})$ -game stationary if $\beta \leq K^{-\frac{1}{2}}$.

• KŁ exponent $\theta \in (\frac{1}{2}, 1)$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4\theta}})$ -game stationary if $\beta \leq K^{-\frac{2\theta-1}{2\theta}}$.

• KŁ exponent $\theta \in [0, \frac{1}{2}]$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{2}})$ -game stationary if $\beta = \mathcal{O}(1)$.

Numerical Results

Recall the variation regularized Wasserstein DRO:

$$\min_{\theta} g(\theta) := \mathbb{E}_{\mathbb{P}_{N}} \left[\ell(y, f_{\theta}(x)) \right] + \rho \max_{i \in [N]} \| \nabla_{x} \ell(y_{i}, f_{\theta}(x_{i})) \|_{p}.$$
(1)

- $\ell : \mathbb{R} \to \mathbb{R}$ is the loss function;
- $f_{\theta} : \mathbb{R}^d \to \mathbb{R}$ is the feature mapping;
- $\{(x_i, y_i)\}_{i=1}^N$ is the training dataset and $p = \{1, 2, +\infty\};$
- closed connection with the Lipschitz constant of deep neural networks;

Recall the variation regularized Wasserstein DRO:

$$\min_{\theta} g(\theta) := \mathbb{E}_{\mathbb{P}_{N}} \left[\ell(y, f_{\theta}(x)) \right] + \rho \max_{i \in [N]} \| \nabla_{x} \ell(y_{i}, f_{\theta}(x_{i})) \|_{p}.$$
(1)

- $\ell : \mathbb{R} \to \mathbb{R}$ is the loss function;
- $f_{\theta} : \mathbb{R}^d \to \mathbb{R}$ is the feature mapping;
- $\{(x_i, y_i)\}_{i=1}^N$ is the training dataset and $p = \{1, 2, +\infty\};$
- closed connection with the Lipschitz constant of deep neural networks;

- It is challenging for calculating the subdifferential set of the pointwise supremum of an arbitrary family (possibly not differentiable) of (weakly) convex functions.
- Minimax reformulation technique:

$$\min_{\theta} \max_{w \in \Delta_N} \mathbb{E}_{\mathbb{P}_N} \left[\ell(y, f_{\theta}(x)) \right] + \rho \sum_{i=1}^N w_i \| \nabla_x \ell(y_i, f_{\theta}(x_i)) \|_p, \quad (2)$$

which can be recast into the nonsmooth nonconvex-concave minimax problem.

It is challenging for calculating the subdifferential set of the pointwise supremum of an arbitrary family (possibly not differentiable) of (weakly) convex functions.

Minimax reformulation technique:

$$\min_{\theta} \max_{w \in \Delta_N} \mathbb{E}_{\mathbb{P}_N} \left[\ell(y, f_{\theta}(x)) \right] + \rho \sum_{i=1}^N w_i \| \nabla_x \ell(y_i, f_{\theta}(x_i)) \|_{\rho}, \quad (2)$$

which can be recast into the nonsmooth nonconvex-concave minimax problem.

Linear Regression

Consider a simple case — the quadratic loss function with linear feature mapping, i.e., $\ell(y, f_{\theta}(x)) = \frac{1}{2}(y - \theta^{\top}x)^2$

Figure: Compare the convergence behaviours of <u>smoothed PLDA</u> with subgradient and smoothed GDA on both synthetic and real world datasets.

Linear Regression

Consider a simple case — the quadratic loss function with linear feature mapping, i.e., $\ell(y, f_{\theta}(x)) = \frac{1}{2}(y - \theta^{\top}x)^2$

Figure: Compare the convergence behaviours of <u>smoothed PLDA</u> with subgradient and smoothed GDA on both synthetic and real world datasets.

Deep Neural Network

Here, $\ell(\cdot, \cdot)$ is the cross-entropy loss and $f_{\theta}(\cdot)$ is the feature mapping generated by a neural network with 2 hidden layers of size 5 and use the exponential linear unit (ELU) as the activation function.

Thank you for listening!

Linglingzhi Zhu

llzzhu@se.cuhk.edu.hk