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Orthogonal Group Synchronization

Let the orthogonal group elements (Ground-Truth)
G*=(Gf,...,G;) € O(d)"
be the target to be estimated, where
O(d)={QeR™: Q" = Q" Q = Iy}

Recover G* from {Cj; : (i,j) € E}, where
» EC{(i,j):1<i<j<n}
» Cjj is the noisy measurement of the relative transform G,-*Gj*T
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Example of Applications

» Graph Realization
- Sensor Network Localization [Cucuringu et al., 2012a]
- Structural Biology [Cucuringu et al., 2012b]
» Computer Vision
- 2D/3D Point Set Registration [Khoo et al., 2016]
- Multiview Structure from Motion [Arie-Nachimson et al., 2012],
- Common Lines in Cryo-Electron Microscopy [Singer et al., 2011],
» Robotics
- Simultaneous Localization and Mapping (SLAM) [Rosen et al.,
2019]
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Nonconvex Least Squares Formulation

From the maximum likelihood estimator we formulate the problem:

' GG — Cyl? MLE
Gl,...,r?;,l,go(d Z;EH iillE ( )
7./

Since Gy, ..., G, € O(d), Problem (MLE) is equivalent to

tr(G' CG P
s r( ) (QP)

where Q@ = (Q1,..., Q) € O(d)" C R"¥*9d and C € R¥*nd,

Problem (QP) is nonconvex in general with structure:
» Quadratic objective function over orthogonal group constraint O(d)

» The measurement matrix C usually owns a generative model



Approaches for Solving (QP)

> Semidefinite Relaxation [Ling, 2020a, Won et al., 2021]

max tr(CX) st Xi=l4, X =0
X eRndxnd

- strong recovery guarantees (under generative models) but not scale
well with problem size

» Burer-Monteiro [Boumal, 2016, Ling, 2020a]

max tr(CXX")
XERndxp

where
p>d, X:=[Xy;- ;X e RUE*P XX = Iy
- usually weak recovery guarantees
» Spectral Relaxation [Ling, 2020b]

max tr(CXX') st. X' X=n-ly
XecRndxd

- simple but unsatisfactory estimation performance
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Nonconvex Approach with Generative Model

Recall that
max tr(G ' CG) (QP)
GeO(d)n

In general, Problem (QP) is NP-hard as a quadratic program problem with
quadratic constraints (QPQC) (reduced to Max-Cut problem when d = 1).

Generative Model:

» The measurement matrix is the additive noise model
T ..
C;J':G,-*Gj* —|—A;j, (I,j)EE,

where the measurement set E and noise matrices {Aj; : (i,j) € E}
possess certain statistical properties.



Generalized Power Method
The Generalized Power Method (GPM) is an efficient algorithm through
the nonconvex approach [Journe et al., 2010, Boumal, 2016]. For

.
Gg‘loaé f(G) :=tr(G' CG) (QP)

the method goes as follows:

Algorithm 1 GPM for Solving Problem (QP)
1: Input: the matrix C, stepsize o > 0, initial point G® € O(d)".
2. for k=0,1,... do N R
3 Gktle Projo(d)n(CGk), where C := C + alyy.
4: end for

» The projection Projoq)n(G) = (Projo(q)(G1), - - -, Projog)(Gn)) has
a closed-form solution by SVD.
» The GPM is actually the projected gradient method

G**1 € Projogy (Gk + a—lw(ck)) .



Existing Results

Theorem (Liu et al., 2020)
Let {G*},>0 be the sequence generated by the GPM. Suppose that

» (Sampling) The measurement set E is sufficiently dense

> (Noise) |All2 and ||AG*||g are sufficiently small

» (Initialization) d(G°, G*) := Qm(é?d)HGO — G*Q)||F is sufficiently small
€

Then for any k > 1, there exists 0 < A < 1 and ¢ > 0 such that

d(G*, G*) < \*LA(G°, G*) + c | AGH|| .



Existing Results

Theorem (Liu et al., 2020)

Let {G*},>0 be the sequence generated by the GPM. Suppose that
» (Sampling) The measurement set E is sufficiently dense
> (Noise) |All2 and ||AG*||g are sufficiently small

» (Initialization) d(G%, G*) := min ||G® — G*Q||F is sufficiently small
QReO(d)

Then for any k > 1, there exists 0 < A < 1 and ¢ > 0 such that

d(G*, G*) < \*LA(G°, G*) + c | AGH|| .

Question: which point does GPM converge to and at what rate?



Optimality Conditions

L T
omax f(6) = tr(G CG) (QP)

» first-order critical point (FOCP): S(G)G =0
» second-order critical point (SOCP):
5(6)6G =0, (H,5(G)H) =0
forall H € {[Xi;...; X, € R"*9 | X; = E;G;, E; = —E, i € [n]}.
Denote S(G) := symblockdiag(CGG ") — C, where the linear operator
symblockdiag: R"¥*"d — §7 is defined as
Xii + X,-;r

symblockdiag(X);; = 2
0, otherwise.

if =],



Optimality Conditions
Let a > 0. Denote the operator of the GPM by T, : O(d)" = O(d)" for
each G € O(d)" as follows:

To(G) = Projo(d)n(CN"G), where € := C + alyy

We derive the following relationship without any generative model
» first-order critical points (FOCPs)
» second-order critical points (SOCPs)
» global maximizers (GMs)
> fixed points of 7,(G) (i.e., G € To(G)) (FPs)

GMs of (QP)

v

SOCPs of (QP)

v

FOCPs of (QP)

L2

v

N

mazo {FPs of 7,}

—

Nosar {FPs of 7o}

—

Uazo {FPs of T}
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Optimality Conditions
Let a > 0. Denote the operator of the GPM by T, : O(d)" = O(d)" for
each G € O(d)" as follows:

To(G) = Projo(d)n(CN"G), where € := C + alyy

We derive the following relationship without any generative model
» first-order critical points (FOCPs)
» second-order critical points (SOCPs)
» global maximizers (GMs)
> fixed points of 7,(G) (i.e., G € To(G)) (FPs)

GMs of (QP)

v

SOCPs of (QP)

v

FOCPs of (QP)

N

L2 v

Naso {FPs of Ta} 3 Nusar 1FPs of To} —{ U0 {FPs of 7o}

Is the FP necessarily a GM? If so, any quantified result?
Relation between a GM and Ground-Truth G*?



Generative Model Setting

The noisy incomplete pairwise measurements
T . . .
¢ Wi (GGT g, ifi#)
/ Wi - 1y, otherwise,

where

> W € R"™" is the symmetric adjacency matrix of the measurement
graph G([n], Q) with an edge set Q
» W =p>0forall i€ |[n
By defining A:= W ® (141}), we write
C=Ao(G*G*" + ),

where “®" is the Kronecker product and “o” is the Hadamard product.

11/21



Local Error Bound Property
Proposition (Distance between G and G*)

The global maximizer G € O(d)" satisfies

d(G, G*) < 4™ Wn 1d (|W — p-1,1) || + Ao A])

Theorem (Local Error Bound)
Suppose that

» (Sampling & Noise)

3/4
IW = - 117 + 1A A < o, [I(A08)6 | < 55,
T a
MaXe|n] (A= p- 1gll) o G*G*T)i Gl <o
np
> as 20v2

Then for any G € O(d)" satisfying d(G, G*) < 4 and any G € O(d)"

765d(G, G) < pa(G) (residual function)

’
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Residual Function
Recall that « > 0 and € = C + al,y. Let D, : O(d)" — S" be defined as

D.(G) := Diag ([UCFGZC;GU;{TG; cee UC,TGZC,TGU(—:I,TG}) - 67

where Ugr . € =({'G) and

=(Z) = {U € O(m) | Z = UL(Z)VT for some V ¢ O(n)}.
Then we define p,, : O(d)" — R as follows:
pa(G) = HDa(G)G”F (RES)

The operator D,, is a single-valued rather than set-valued mapping, since
for any Ux € =(X) there exists a unique positive semidefinite matrix

(XX T2 = UxZx Ux.
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Relation to Fixed Points of the GPM

Recall the local error bound result:

nu A
— < .

For any G € O(d)" and T,(G) € T4(G)
D.(G)G = Diag(€G) - Diag ([(Ta(c) —G){ ;.. (Ta(G) - G)T]) G
—  pa(G) = |Da(G)GlF < nd||CI[|G — Ta(G)llF

» Answer the question that the fixed point (FP) of the GPM are the
global maximizer (GM) of (QP) with the local quantitative result.

» Theoritical motivation for using the projected gradient method (i.e.,
the GPM) to solve Problem (QP).
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GPM with Spectral Initialization

Algorithm 2 GPM with Spectral Initialization (GPM-Spec)

1: Input: the matrix C, stepsize o > 0.
2: Compute the top d eigenvectors ® of C with T = nlj.

3: Compute G° € Projo(q)»(P) and generate {G*} by the GPM.

Proposition (Good Initialization & Stay in Ball)
The spectral estimator G° € O(d)" satisfies

d(G% G*) <8u Vn=ld (|W —pn-1,1) | + [[Ac Al]).
Suppose further that

> (Sampling & NO/se) (W — - 1,10+ Ao Al <
> (Stepsize) o <

60d1/2

30\/_
Then {G*} k>0 generated by the GPM-Spec satisfies d(G*, G*) <

\/_ .
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Convergence Analysis of GPM-Spec

Theorem (Linear convergence of the GPM-Spec)
Suppose that

» (Sampling & Noise)
3/,
IW = - 1a15 [+ [|A0 Al < o, (Ao A)G*|lo < 1,
((A_M']-nd]- )OG*G*T) GA np
> (Stepsize) |Ao Al| + [|W —p- 1,1} || <a <

maXien]

| /\

10

30\/_
Then, the sequence {G k}kZO generated by the GPM-Spec satisfies

F(G) — F(G¥) < (F(G) — F(G°))\

and A A
d(GX, 6) <a- (f(G) — F(G%)/2\2,

where a > 0, A € (0,1) are constants that depend only on n, d, ji, «
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Erdos-Rényi Graph with Gaussian Noise Setting

Recall the noisy incomplete pairwise measurements

c = AWy (GFGET + Ay) i A,
Y Wi - 1y, otherwise.
The Erdos-Rényi graph G([n], p) with Gaussian noise setting satisfying:
» Wi are i.i.d. random variables following the Bernoulli distribution
taking 1 with probability p (associated with n), otherwise being 0,
and Wj; = Wj; for each i < j

> Wij=p= nz(:,;fl‘)% for each i € [n]

» A =0Z where o >0, Z €S with Z; = 0 for i € [n] and Zjj are
i.i.d. standard Gaussian variables for i # j
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Convergence Analysis under Gaussian Noise

Theorem (Linear convergence of the GPM under Gaussian noise)
Suppose that

» (Sampling) the Erdés-Rényi graph G([n], p) satisfies p >

%L

. 1/4,1/2
» (Noise) A = 0Z, where 0 < o < "L2_P

> (Stepsize) “0”1/2” <a< SR

where ko, k1 > 0 are constants. Then for sufficiently large n € N, the
sequence {G*}>¢ generated by the GPM-Spec with high probability
satisfies

F(G) - F(G*) < (f(G) — F(GO))AF

and A A
d(GX, 6) < a- (f(G) — F(G%)/2N2,

where a > 0, X € (0,1) are constants that depend only on n, d, p, «
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Conclusion & Discussion

» The GPM (with good initialization) is a simple and provable effect
algorithm for the orthogonal group synchronization problem, which is
nonconvex but owns nice properties.

» The error bound result is motivated by the GPM but it is an
algorithm-independent property.

» It will be intersting to investigate synchronization problems of other
subgroups of orthogonal group, e.g. SO(d) as a generalization of the
phase synchronization problem SO(2), where the noncommutative
nature brings difficulty.
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Thank you!



