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Orthogonal Group Synchronization

Let the orthogonal group elements (Ground-Truth)

G 󰂏 = (G 󰂏
1 , . . . ,G

󰂏
n ) ∈ O(d)n

be the target to be estimated, where

O(d) =
󰁱
Q ∈ Rd×d : QQ⊤ = Q⊤Q = Id

󰁲
.

Recover G 󰂏 from {Cij : (i , j) ∈ E}, where
◮ E ⊆ {(i , j) : 1 ≤ i < j ≤ n}
◮ Cij is the noisy measurement of the relative transform G 󰂏

i G
󰂏⊤
j
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Example of Applications

◮ Graph Realization
- Sensor Network Localization [Cucuringu et al., 2012a]
- Structural Biology [Cucuringu et al., 2012b]

◮ Computer Vision
- 2D/3D Point Set Registration [Khoo et al., 2016]
- Multiview Structure from Motion [Arie-Nachimson et al., 2012],
- Common Lines in Cryo-Electron Microscopy [Singer et al., 2011],

◮ Robotics
- Simultaneous Localization and Mapping (SLAM) [Rosen et al.,
2019]
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Nonconvex Least Squares Formulation

From the maximum likelihood estimator we formulate the problem:

min
G1,...,Gn∈O(d)

󰁛

(i ,j)∈E
󰀂GiG

⊤
j − Cij󰀂2F (MLE)

Since G1, . . . ,Gn ∈ O(d), Problem (MLE) is equivalent to

max
G∈O(d)n

tr(G⊤CG ) (QP)

where Q = (Q1, . . . ,Qn) ∈ O(d)n ⊆ Rnd×d and C ∈ Rnd×nd .

Problem (QP) is nonconvex in general with structure:

◮ Quadratic objective function over orthogonal group constraint O(d)

◮ The measurement matrix C usually owns a generative model
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Approaches for Solving (QP)

◮ Semidefinite Relaxation [Ling, 2020a, Won et al., 2021]

max
X∈Rnd×nd

tr(CX ) s.t. Xii = Id , X ≽ 0

- strong recovery guarantees (under generative models) but not scale
well with problem size

◮ Burer-Monteiro [Boumal, 2016, Ling, 2020a]

max
X∈Rnd×p

tr(CXX⊤)

where

p > d , X := [X1; · · · ;Xn] ∈ Rnd×p, XiX
⊤
i = Id

- usually weak recovery guarantees

◮ Spectral Relaxation [Ling, 2020b]

max
X∈Rnd×d

tr(CXX⊤) s.t. X⊤X = n · Id

- simple but unsatisfactory estimation performance
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Nonconvex Approach with Generative Model

Recall that
max

G∈O(d)n
tr(G⊤CG ) (QP)

In general, Problem (QP) is NP-hard as a quadratic program problem with
quadratic constraints (QPQC) (reduced to Max-Cut problem when d = 1).

Generative Model:

◮ The measurement matrix is the additive noise model

Cij = G 󰂏
i G

󰂏⊤
j +∆ij , (i , j) ∈ E ,

where the measurement set E and noise matrices {∆ij : (i , j) ∈ E}
possess certain statistical properties.
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Generalized Power Method
The Generalized Power Method (GPM) is an efficient algorithm through
the nonconvex approach [Journe et al., 2010, Boumal, 2016]. For

max
G∈O(d)n

f (G ) := tr(G⊤CG ) (QP)

the method goes as follows:

Algorithm 1 GPM for Solving Problem (QP)

1: Input: the matrix C , stepsize α ≥ 0, initial point G 0 ∈ O(d)n.
2: for k = 0, 1, . . . do
3: G k+1 ∈ ProjO(d)n(C̃G k), where C̃ := C + αInd .
4: end for

◮ The projection ProjO(d)n(G ) = (ProjO(d)(G1), . . . ,ProjO(d)(Gn)) has
a closed-form solution by SVD.

◮ The GPM is actually the projected gradient method

G k+1 ∈ ProjO(d)n

󰀓
G k + α−1∇f (G k)

󰀔
.
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Existing Results

Theorem (Liu et al., 2020)

Let {G k}k≥0 be the sequence generated by the GPM. Suppose that

◮ (Sampling) The measurement set E is sufficiently dense

◮ (Noise) 󰀂∆󰀂2 and 󰀂∆G 󰂏󰀂F are sufficiently small

◮ (Initialization) d(G 0,G 󰂏) := min
Q∈O(d)

󰀂G 0 − G 󰂏Q󰀂F is sufficiently small

Then for any k ≥ 1, there exists 0 < λ < 1 and c > 0 such that

d(G k ,G 󰂏) ≤ λk+1d(G 0,G 󰂏) + c 󰀂∆G 󰂏󰀂F .
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Question: which point does GPM converge to and at what rate?
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Optimality Conditions

max
G∈O(d)n

f (G ) := tr(G⊤CG ) (QP)

◮ first-order critical point (FOCP): S(G )G = 0

◮ second-order critical point (SOCP):

S(G )G = 0, 〈H, S(G )H〉 ≥ 0

for all H ∈
󰀋
[X1; . . . ;Xn] ∈ Rnd×d | Xi = EiGi , Ei = −E⊤

i , i ∈ [n]
󰀌
.

Denote S(G ) := symblockdiag(CGG⊤)− C , where the linear operator
symblockdiag: Rnd×nd → Snd is defined as

symblockdiag(X )ij =

󰀻
󰀿

󰀽

Xii + X⊤
ii

2
, if i = j ,

0, otherwise.
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Optimality Conditions
Let α ≥ 0. Denote the operator of the GPM by Tα : O(d)n 󰃃 O(d)n for
each G ∈ O(d)n as follows:

Tα(G ) := ProjO(d)n(C̃G ), where C̃ := C + αInd

We derive the following relationship without any generative model
◮ first-order critical points (FOCPs)
◮ second-order critical points (SOCPs)
◮ global maximizers (GMs)
◮ fixed points of Tα(G ) (i.e., G ∈ Tα(G )) (FPs)

GMs of (QP)

󰁗
α≥0 {FPs of Tα}

SOCPs of (QP)

󰁗
α≥α′ {FPs of Tα}

󰁖
α≥0 {FPs of Tα}

FOCPs of (QP)
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Is the FP necessarily a GM? If so, any quantified result?
Relation between a GM and Ground-Truth G 󰂏?
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Generative Model Setting

The noisy incomplete pairwise measurements

Cij =

󰀫
Wij · (G 󰂏

i G
󰂏⊤
j +∆ij), if i ∕= j ,

Wii · Id , otherwise,

where

◮ W ∈ Rn×n is the symmetric adjacency matrix of the measurement
graph G([n],Ω) with an edge set Ω

◮ Wii = µ > 0 for all i ∈ [n]

By defining A := W ⊗ (1d1
⊤
d ), we write

C = A ◦ (G 󰂏G 󰂏⊤ +∆),

where “⊗” is the Kronecker product and “◦” is the Hadamard product.
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Local Error Bound Property

Proposition (Distance between Ĝ and G 󰂏)

The global maximizer Ĝ ∈ O(d)n satisfies

d(Ĝ ,G 󰂏) ≤ 4µ−1
√
n−1d

󰀃󰀐󰀐W − µ · 1n1⊤n
󰀐󰀐+ 󰀂A ◦∆󰀂

󰀄

Theorem (Local Error Bound)

Suppose that

◮ (Sampling & Noise)

󰀂W − µ · 1n1⊤n 󰀂+ 󰀂A ◦∆󰀂 ≤ n3/4µ
40d1/2 , 󰀂(A ◦∆)G 󰂏󰀂∞ ≤ nµ

10 ,

maxi∈[n]

󰀐󰀐󰀐
󰀃
(A− µ · 1nd1⊤nd) ◦ G 󰂏G 󰂏⊤󰀄⊤

i
Ĝ
󰀐󰀐󰀐 ≤ nµ

10

◮ α ≤ nµ

20
√
2

Then for any G ∈ O(d)n satisfying d(G ,G 󰂏) ≤
√
n
5 and any Ĝ ∈ O(d)n,

nµ
10d(G , Ĝ ) ≤ ρα(G ) (residual function)
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Residual Function

Recall that α ≥ 0 and C̃ = C +αInd . Let Dα : O(d)n → Snd be defined as

Dα(G ) := Diag
󰀓󰁫

UC̃⊤
1 GΣC̃⊤

1 GU
⊤
C̃⊤
1 G

; . . . ;UC̃⊤
n GΣC̃⊤

n GU
⊤
C̃⊤
n G

󰁬󰀔
− C̃ ,

where UC̃⊤
i G ∈ Ξ(C̃⊤

i G ) and

Ξ(Z ) :=
󰁱
U ∈ O(m) | Z = UΣ(Z )V⊤ for some V ∈ O(n)

󰁲
.

Then we define ρα : O(d)n → R+ as follows:

ρα(G ) := 󰀂Dα(G )G󰀂F (RES)

The operator Dα is a single-valued rather than set-valued mapping, since
for any UX ∈ Ξ(X ) there exists a unique positive semidefinite matrix

(XX⊤)1/2 = UXΣXU
⊤
X .
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Relation to Fixed Points of the GPM

Recall the local error bound result:

nµ

10
d(G , Ĝ ) ≤ ρα(G ).

For any G ∈ O(d)n and Tα(G ) ∈ Tα(G )

Dα(G )G = Diag(C̃G ) ·Diag
󰀓󰁫

(Tα(G )− G )⊤1 ; . . . ; (Tα(G )− G )⊤n

󰁬󰀔
G

=⇒ ρα(G ) = 󰀂Dα(G )G󰀂F ≤ nd󰀂C̃󰀂󰀂G − Tα(G )󰀂F

◮ Answer the question that the fixed point (FP) of the GPM are the
global maximizer (GM) of (QP) with the local quantitative result.

◮ Theoritical motivation for using the projected gradient method (i.e.,
the GPM) to solve Problem (QP).
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GPM with Spectral Initialization

Algorithm 2 GPM with Spectral Initialization (GPM-Spec)

1: Input: the matrix C , stepsize α ≥ 0.
2: Compute the top d eigenvectors Φ of C with Φ⊤Φ = nId .
3: Compute G 0 ∈ ProjO(d)n(Φ) and generate {G k} by the GPM.

Proposition (Good Initialization & Stay in Ball)

The spectral estimator G 0 ∈ O(d)n satisfies

d(G 0,G 󰂏) ≤ 8µ−1
√
n−1d

󰀃󰀐󰀐W − µ · 1n1⊤n
󰀐󰀐+ 󰀂A ◦∆󰀂

󰀄
.

Suppose further that

◮ (Sampling & Noise) 󰀂W − µ · 1n1⊤n 󰀂+ 󰀂A ◦∆󰀂 ≤ nµ
60d1/2

◮ (Stepsize) α ≤ nµ

30
√
2d

Then {G k}k≥0 generated by the GPM-Spec satisfies d(G k ,G 󰂏) ≤
√
n
5 .
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Convergence Analysis of GPM-Spec

Theorem (Linear convergence of the GPM-Spec)

Suppose that

◮ (Sampling & Noise)

󰀂W − µ · 1n1⊤n 󰀂+ 󰀂A ◦∆󰀂 ≤ n3/4µ
60d1/2 , 󰀂(A ◦∆)G 󰂏󰀂∞ ≤ nµ

10 ,

maxi∈[n]

󰀐󰀐󰀐
󰀃
(A− µ · 1nd1⊤nd) ◦ G 󰂏G 󰂏⊤󰀄⊤

i
Ĝ
󰀐󰀐󰀐 ≤ nµ

10

◮ (Stepsize) 󰀂A ◦∆󰀂+ 󰀂W − µ · 1n1⊤n 󰀂 < α ≤ nµ

30
√
2d

Then, the sequence {G k}k≥0 generated by the GPM-Spec satisfies

f (Ĝ )− f (G k) ≤ (f (Ĝ )− f (G 0))λk

and
d(G k , Ĝ ) ≤ a · (f (Ĝ )− f (G 0))1/2λk/2,

where a > 0, λ ∈ (0, 1) are constants that depend only on n, d, µ, α.
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Erdös-Rényi Graph with Gaussian Noise Setting

Recall the noisy incomplete pairwise measurements

Cij =

󰀫
Wij · (G 󰂏

i G
󰂏⊤
j +∆ij), if i ∕= j ,

Wii · Id , otherwise.

The Erdös-Rényi graph G([n], p) with Gaussian noise setting satisfying:

◮ Wij are i.i.d. random variables following the Bernoulli distribution
taking 1 with probability p (associated with n), otherwise being 0,
and Wji = Wij for each i < j

◮ Wii = µ =
󰁓

i<j Wij

n(n−1)/2 for each i ∈ [n]

◮ ∆ = σZ , where σ > 0, Z ∈ Snd with Zii = 0 for i ∈ [n] and Zij are
i.i.d. standard Gaussian variables for i ∕= j
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Convergence Analysis under Gaussian Noise

Theorem (Linear convergence of the GPM under Gaussian noise)

Suppose that

◮ (Sampling) the Erdös-Rényi graph G([n], p) satisfies p ≥ κ0d√
n

◮ (Noise) ∆ = σZ, where 0 < σ ≤ κ1n1/4p1/2

d

◮ (Stepsize) κ0n3/4p
d1/2 ≤ α ≤ κ1np

d1/2

where κ0,κ1 > 0 are constants. Then for sufficiently large n ∈ N, the
sequence {G k}k≥0 generated by the GPM-Spec with high probability
satisfies

f (Ĝ )− f (G k) ≤ (f (Ĝ )− f (G 0))λk

and
d(G k , Ĝ ) ≤ a · (f (Ĝ )− f (G 0))1/2λk/2,

where a > 0, λ ∈ (0, 1) are constants that depend only on n, d, p, α.
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Conclusion & Discussion

◮ The GPM (with good initialization) is a simple and provable effect
algorithm for the orthogonal group synchronization problem, which is
nonconvex but owns nice properties.

◮ The error bound result is motivated by the GPM but it is an
algorithm-independent property.

◮ It will be intersting to investigate synchronization problems of other
subgroups of orthogonal group, e.g. SO(d) as a generalization of the
phase synchronization problem SO(2), where the noncommutative
nature brings difficulty.
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Thank you!
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