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Rotation Group Synchronization

The rotation group elements (Ground-Truth)
G* = (Gf,...,G))eSO(d)"
is the target to be estimated, where

50(d) = {QeR? - QQT = QTQ = Iy, det(Q) = 1}.

Task: Recover G* from {C;j e R¥*9: 1< i< <n}
- Cj: noisy measurement of relative transform G GJ-*T;

- (Generative Model) C; = G,-*GJ-*T + Ajj.
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Examples of Applications

» Computer Vision
- Cryo—EIectron MiCI’OSCOpy [Singer, 2018, Singer and Shkolnisky, 2011]
- Point Set Registration [Khoo and Kapoor, 2016]
- Multiview Structure from Motion [Arie-Nachimson et al., 2012]
» Robotics
- Simultaneous Localization and Mapping [Rosen et al., 2019]
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Nonconvex Least Squares Formulation

Least squares estimator:

o 20166~ Gill

GL-+:,GnESO(d) 4

GieSO(d
580, max tr(G' CG)
GeSO(d)n

where G = (Gy,...,G,) € SO(d)" and C e R"¥*nd,

(QP-S) is nonconvex QP over SO(d)"

Global optimum? C owns generative model;

(d = 2) Phase synchronization (commutative group SO(2))

[Boumal, 2016, Liu et al., 2017, Zhong and Boumal, 2018]

(LS)

(QP-5)
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Existing Approaches for Solving (QP-S)
Step 1: Relax (QP-S) to

max tr(G' CG) (QP-0)
GeO(d)"
Step 2: Solve (QP-O) by Generalized Power Method (GPM)
[Liu et al., 2020, Zhu et al., 2021, Ling, 2022a]:

Gk+1 € PrO_jo(d)n((C + Oflnd)Gk).
Further relaxed form:

SDR [Singer, 2011, Bandeira et al., 2017, Won et al., 2022]
max tr(CX) st. Xj=Ilg, X >0

XeRndxnd
Burer-Monteiro [Boumal et al., 2016, Ling, 2022(]
max tr(CXXT) st. XX =1y, X = [X1;...; Xa]
XeRndxp
Spectral Relaxation [Singer, 2011, Ling, 2022b]

max tr(CXXT) st. X' X =n-ly
XeRndxd
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Main Questions

Q1: Is the relaxation in Step 1 reasonable?

max tr(G'CG) — max tr(G' CG)
GeSO(d)" GeO(d)"

Q2: For Step 2, whether we can design simple and fast algorithms
utilizing intrinsic manifold structure?

Q3: Does (QP-S)/(QP-0O) have good landscape that allows us to find a
global optimum with fast convergence though it is nonconvex?
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Main Questions

Q1: Is the relaxation in Step 1 reasonable?

max tr(G'CG) — max tr(G' CG)
GeSO(d)" GeO(d)"

Under generative model with deterministic noise when exact recovery.

Q2: For Step 2, whether we can design simple and fast algorithms
utilizing intrinsic manifold structure?

Riemannian algorithms stay on a connected component of orthogonal
group naturally, e.g., Riemannian gradient method (RGM).

Q3: Does (QP-S)/(QP-0O) have good landscape that allows us to find a
global optimum with fast convergence though it is nonconvex?

Benefitted from the quotient geometric view.
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Quotient View

For G" = O(d)" or SO(d)"

max f(G) :=tr(G' CG) (QP)
Gegn
NP-hard as QPQC (reduced to Max-Cut when G" = O(d)", d = 1).
Generative model:
Cj = Gf GJ-*T + Ajj, Aj : deterministic noise
Quotient equivalent form:
max f([G]) :==tr(g' G' CGg) = tr(G' CG) (Q)
[GleQ
-[G]:={G"eG"| G' = Gg, ge G}
-Q:=G"/G
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Improved Deterministic Estimation Performance

Lemma ([Zhu et al., 2021, Lemma 4.1])

Let G be an optimal solution of (QP-0). Then' dr([G],[G*]) < Y4AL.

Gaussian random matrix |A| < v/ nd = constant noise level for exact recovery
Theorem (éoo Estimation: from Average to Worst Case)
If|A] s J5. then' do([G,[67]) < 6" ~ 67l 5 12512,

Al 25, [AG | s n = dw([G],[G*]) = O(1);
G in same connected component with G* (o/w do ([G],[G*]) = V2).

SOy Cl> O Q Tightness of (QP-0) for (QP-S);
V2

GPM, SDR, BM, SpecR
for solving rotation synchronization.

1 de([X], [Y]) = mingeo gy IX = Y&llr, doo ([X], [Y]) = mingeo gy max; [|X; — YigllF-
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(Quotient) Riemannian Algorithms

max 7(G) := tr(G' CG) and

Gegn
Advantages:

max f([G]) := tr(G' CG)

[GleQ

Keep on same connected component automatically
v Naturally feasible for rotation group synchronization

v Regardless of noise level
Lower computational cost

v Dimension reduction

SDR | GPM | Riemann Quotient
Dimension | n*d®> | nd® | ind(d —1) | 3(n—1)d(d — 1)
Dim (d=3)| 9n° | 9n 3n 3n—3

v SVD free: Projection = Exponential map with explicit form

How can we design (quotient) Riemannian algorithms?
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(Quotient) Riemannian Gradient Method

Algorithm (Quotient) Riemannian gradient method

1: Input: The matrix C, the stepsize t;, > 0 and initial point G® € G".
2: for k=0,1,... do

3.  Compute [GK*1]:= Expycr)(t grad f([GH])).

4: end for

Questions:
How can we calculate “grad f([G¥])"?
Relationship to RGM: G**1 := Expc«(tx grad f(G¥))?
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Quotient Manifold and Tangent Space

Canonical projection 7 : (’)( )" — Q, m(G) :=[G]
Vertical space Vg: Ta(n71([G]))
Horizontal space Hg: He @ Ve = T O(d)"

Definition (Lifted Representation of Tig1Qon O

)")

(d
The horizontal lift of {1 € Tjg) Q at G e 77 ([G]) is the unique vector
£z € He such that D(G) [ég] = €

7 (n(G))

Ve Benefits: Well-defined Gradient
o(@r /¥c/ Df(G)[¢¢] = Df(n(G)) [D(G) [ég]]
Ho = DF([G)) [¢161]
O(d)n/o(d)/_.\ = grad f([G]) ¢ = Projy, . (grad f(G))
* €= =(@)
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Explicit Form of Horizontal Space
Proposition

Ve = {GE : E € Skew(d)}
He = {(GiE1, ..., GyEy), Ej € Skew(d) and 3.7 ; E; = 0}
ProjHG = lg — %GGT

1 (7(@))

Oy /ye/

our/ow)_————

[ ] _
[G] = =(G)
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Quotient Riemannian Gradient and Hessian

Proposition

Let [G] € Q and G € m~1([G]). Then the unique horizontal lift of
Riemannian gradient of f at G € O(d)" is
grad f([G])g = grad f(G) = —25(G)G.
Riemannian Hessian of f with direction Hg; at GeO(d)is
Hess £([G]) [Hia)] g = (Ins — 16 GT) (Projr, o(ay(~25(G)Ag)).
Here, S(X) := symblockdiag(CXX ") — C € R™*"9,

Quotient Riemannian gradient = Riemannian gradient:
f is invariant on equivalence class G € 771([G])
= Df(G)ég = (grad f(G).{g)g =0, ¥iz € Vg
— grad f(G) € (Vg)" = H is horizontal lift of grad f([G]) at G
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Landscape on Quotient Manifold

3/4

Assumption: |A| < =, |[AG* | < n=|4A| < f (Leave-one-out)

Theorem (Strong Concawty around Maximizers)
Suppose that

dr ([G], [é]) < min {v/n, &1},
Then for all Hie Q\ {0 }

- <HeSS f([G])[H[G]]7 Hic)) = § - (Hig), Hiep > 0.

1

1%
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(Quotient) Riemannian Local Error Bound

Theorem ((Quotient) Riemannian Local Error Bound)

Suppose that

A

dr([G1,[6]) < min {v/n, &;}, 162 = 6l < .
Then it follows that

dr([G], [6]) < d2([G],[G]) < 22 - | grad ([G])l[6) < % - || grad F(G)] -

FOCPs = global maximizer of (QP-S) with quantitative result.
Theoretical motivation for using (Q)RGM to solve (QP-S)/(QP-0O).
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Comparison with Error Bound of GPM

Lemma (Error Bound of GPM ([Zhu et al., 2021, Theorem 4.3])

Suppose that
dr([G],[G*]) <

nand o < n.

Then it follows that dr([G],[G]) < 10d||C|| - |G — To(G)||¢.

)

- EB of GPM/Riemannian gradient:

dr([G],[6]) = O(Wn)
+duo([G], [6]) = O(1)

[E——1

- ([zhu et al., 2021])

Fixed points of GPM (FPs) < FOCPs
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Example: Necessity of ¢, Constraint

Example (do([G],[G]) = O(1) is Necessary)
Let d = 2 and A = 0 (implying G* = G). Let G € O(d)" satisfy

—G, ifi=1,
G = R
G;, otherwise.

grad f([G ]A)G grad f(G) = S(G)G =0
dr([G],[G]) = V2

G is only a FOCP: global optimum G is unique (up to rotation)
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Convergence of (Q)RGM: Initialization
Proposition (Spectral Initialization Estimation Error)

The spectral estimator G° = Projg.(®) € G" (® is top d eigenvectors of C
with ®T® = nly) satisfies

4r([6°).[6*]) < YL and | GOg; — G, s 1aGT1e 4 YIIAL,

[6° (6]

3/4
Al S G

loo < 1= dr([6°],[G*]) < n'/*, |GOg5 — G*[l <
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Convergence of (Q)RGM

Theorem (Sequential Linear Convergence)

The sequence {G*} =0 generated by (Q)RGM with spectral initialization
converges to some G* € [G]. Moreover, with X € (0,1),

F(LG]) — F[G*H1]) < A- (F([G]) — F[GX)).
dr([G¥],[6]) < |IG* — G*|lr < (F([G]) — F([G®]))Z - A%.

o

6] [GY] [G*]
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Conclusion & Discussion

Conclusion:
(Landscape) Quotient geometric view of least squares formulation
of rotation/orthogonal group synchronization.
(Algorithm) (Q)RGM: simple and provably efficient algorithm for
rotation group synchronization.

(Tightness) Improved deterministic estimation result = guarantees
for various existing approaches for rotation group sychronization.
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Conclusion & Discussion

Conclusion:

(Landscape) Quotient geometric view of least squares formulation
of rotation/orthogonal group synchronization.

(Algorithm) (Q)RGM: simple and provably efficient algorithm for
rotation group synchronization.

(Tightness) Improved deterministic estimation result = guarantees
for various existing approaches for rotation group sychronization.

Other Riemannian algorithms: second-order/trust region method
- Iterative direction is different on original and quotient manifold.

Landscape analysis from the quotient view for other problems.
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Thank you!
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